Featured Research

from universities, journals, and other organizations

Impaired autophagy associated with age-related macular degeneration

Date:
August 21, 2013
Source:
University of Eastern Finland
Summary:
A new study changes our understanding of the pathogenesis of age-related macular degeneration (AMD). The researchers found that degenerative changes and loss of vision are caused by impaired function of the lysosomal clean-up mechanism, or autophagy, in the fundus of the eye. The results open new avenues for the treatment of the dry form of AMD, which currently lacks an efficient treatment.

A new study published in the journal PLoS One changes our understanding of the pathogenesis of age-related macular degeneration (AMD). The researchers found that degenerative changes and loss of vision are caused by impaired function of the lysosomal clean-up mechanism, or autophagy, in the fundus of the eye. The results open new avenues for the treatment of the dry form of AMD, which currently lacks an efficient treatment. The University of Eastern Finland played a leading role in the study, which also involved research groups from Italy, Germany and Hungary.

AMD is the most common cause of visual impairment in the Western world, and the number of AMD patients is expected to soar in the upcoming decades. AMD is divided into the dry and wet form of the disease, and 85% of AMD patients suffer from dry AMD. Unfortunately, an efficient treatment involving injections into the eye only exists for the wet form of the disease.

AMD is a storage disease in which harmful protein accumulations develop behind the retina. These accumulations are indicative of the severity of the disease. As the disease progresses, retinal sensory cells in the central vision area are damaged, leading to loss of central vision. The cell biological mechanisms underlying protein accumulations remain largely unknown.

For the first time ever, the present study showed that AMD is associated with impaired lysosomal autophagy, which is an important clean-up mechanism of the fundus of the eye. This renders the cells in the fundus of the eye unable to dispose of old, deformed or otherwise faulty proteins, which, in turn, leads to the development of protein accumulations and loss of vision. The study can be regarded as a breakthrough, as the results change our understanding of the pathogenesis of AMD and also open new avenues for the treatment of the dry form of AMD. Drugs inhibiting the impairment of autophagy could possibly even stop the progression of AMD.


Story Source:

The above story is based on materials provided by University of Eastern Finland. Note: Materials may be edited for content and length.


Journal Reference:

  1. Johanna Viiri, Marialaura Amadio, Nicoletta Marchesi, Juha M. T. Hyttinen, Niko Kivinen, Reijo Sironen, Kirsi Rilla, Saeed Akhtar, Alessandro Provenzani, Vito Giuseppe D'Agostino, Stefano Govoni, Alessia Pascale, Hansjurgen Agostini, Goran Petrovski, Antero Salminen, Kai Kaarniranta. Autophagy Activation Clears ELAVL1/HuR-Mediated Accumulation of SQSTM1/p62 during Proteasomal Inhibition in Human Retinal Pigment Epithelial Cells. PLoS ONE, 2013; 8 (7): e69563 DOI: 10.1371/journal.pone.0069563

Cite This Page:

University of Eastern Finland. "Impaired autophagy associated with age-related macular degeneration." ScienceDaily. ScienceDaily, 21 August 2013. <www.sciencedaily.com/releases/2013/08/130821085042.htm>.
University of Eastern Finland. (2013, August 21). Impaired autophagy associated with age-related macular degeneration. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2013/08/130821085042.htm
University of Eastern Finland. "Impaired autophagy associated with age-related macular degeneration." ScienceDaily. www.sciencedaily.com/releases/2013/08/130821085042.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com
What's To Blame For Worst Ebola Outbreak In History?

What's To Blame For Worst Ebola Outbreak In History?

Newsy (July 27, 2014) A U.S. doctor has tested positive for the deadly Ebola virus, as the worst-ever outbreak continues to grow. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins