Featured Research

from universities, journals, and other organizations

Physicist disentangles 'Schrodinger's cat' debate

Date:
August 26, 2013
Source:
University of Arkansas, Fayetteville
Summary:
A physicist that the answer to the long-running debate of quantum measurement lies in the phenomenon of nonlocality.

Physicist Art Hobson has offered a solution, within the framework of standard quantum physics, to the long-running debate about the nature of quantum measurement.

Related Articles


In an article published August 8 by Physical Review A, a journal of the American Physical Society, Hobson argues that the phenomenon known as "nonlocality" is key to understanding the measurement problem illustrated by "Schrodinger's cat."

In 1935, Nobel Laureate Erwin Schrodinger used the example of a cat in a closed box to illustrate the central paradox of quantum physics: microscopic particles such as electrons, photons or atoms can exist in two quantum states at once. These states are known as "superpositions."

"A measurement in quantum physics means using some sort of large-scale macroscopic device, such as a Geiger counter, to learn something about the quantum state of a microscopic system, such as an atom or a single photon," Hobson said. "Quantum theory seems to imply that if you connect the microscopic system to a large-scale measuring device that distinguishes between the two distinct states of the microscopic system, then the Geiger counter will be also 'entangled' into a superposition of existing in two simultaneous states. However, this is something that we never observe and is not acceptable."

Using Schrodinger's illustration, Hobson said the cat plays the role of the Geiger counter that is connected to a radioactive nucleus in order to determine the decayed or undecayed state of the nucleus. A "live cat" would be a macroscopic signal of an undecayed nucleus and a "dead cat" would be the macroscopic signal of a decayed nucleus. Quantum theory seems to say that the cat should therefore be entangled into a superposition of being both dead and alive, he said.

Instead, Hobson writes in his article that the cat's quantum state is "entangled" with the atom's state, implying that there is an important "nonlocal relation," or instantaneous action-at-a-distance, between the two. According to nonlocality, if any two entangled objects are sent in opposite directions and the state of one of them is altered, the second instantly alters its state in response no matter how far apart the two may be. Hobson cites direct experimental evidence supporting his analysis, from experiments performed in 1990 involving nonlocal observation of entangled pairs of photons.

"The strange thing is that the action happens instantly, with no time for light or an electromagnetic signal or radio signal to communicate between the two," Hobson said. "It is a single object that is behaving as a single object but it is in two different places. It doesn't matter what the distance is between them.

That phenomenon must be taken into account to resolve the measurement problem, he said. That means with Schrodinger's cat, the cat is no longer predicted to be both dead and alive. It is instead dead if the nucleus decays, and alive if the nucleus does not decay, just as one would expect.

According to Hobson, since 1978, three previous published analyses have suggested similar solutions to the measurement problem, but the earlier solutions were little noticed at the time and the debate continued, "leading to confusion and even to pseudoscientific claims about the implications of quantum physics," he said.

"It's important to sort out the foundations of quantum physics," Hobson said. "This theory is more than a century old now, and these ideas have been out there but they haven't been noticed or taken seriously enough. It is my hope that this resolution of the measurement problem will now be accepted by the quantum foundations community."


Story Source:

The above story is based on materials provided by University of Arkansas, Fayetteville. Note: Materials may be edited for content and length.


Journal Reference:

  1. Art Hobson. Two-photon interferometry and quantum state collapse. Physical Review A, 2013; 88 (2) DOI: 10.1103/PhysRevA.88.022105

Cite This Page:

University of Arkansas, Fayetteville. "Physicist disentangles 'Schrodinger's cat' debate." ScienceDaily. ScienceDaily, 26 August 2013. <www.sciencedaily.com/releases/2013/08/130826123037.htm>.
University of Arkansas, Fayetteville. (2013, August 26). Physicist disentangles 'Schrodinger's cat' debate. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2013/08/130826123037.htm
University of Arkansas, Fayetteville. "Physicist disentangles 'Schrodinger's cat' debate." ScienceDaily. www.sciencedaily.com/releases/2013/08/130826123037.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins