Featured Research

from universities, journals, and other organizations

Imaging: A brighter future for cell tracking

Date:
August 31, 2013
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Fluorescent organic nanoparticles operating as cell tracers outperform existing methods for long-term tracking of living cells.

A research team in Asia has developed a method for tracking, or 'tracing', cells that overcomes the limitations of existing methods. The team's fluorescent organic tracers will provide researchers with a non-invasive tool to continually track biological processes for long periods. Applications for the tracers include following carcinogenesis or the progress of interventions such as stem cell therapies.

Bin Liu and Ben Zhong Tang of the A*STAR Institute of Materials Research and Engineering in Singapore and their co-workers developed probes composed of a small number of molecules that aggregate1. The aggregation means that the probes have more detectable fluorescence and less leakage than that provided by single-molecule probes. Importantly, rather than 'blink', the team's tracers show steady fluorescence, and do not contain heavy metal ions that can be toxic for living systems.

Compared with their existing inorganic counterparts, the team's carbon-based tracers show greater chemical stability and improved biocompatibility with cell biochemistry. They are also more resistant to bleaching by light and do not interfere with normal biochemical processes. Furthermore, the fluorescent signals emitted by the probes do not overlap with the signal naturally emitted by cells.

The tracers developed by Liu, Tang and their colleagues are examples of 'quantum dots', as they are composed of a small number of molecules with optical characteristics that rely on quantum-mechanical effects. Technically, they are referred to as aggregation-induced emission dots (AIE dots) as they become photostable and highly efficient fluorescent emitters when their component molecules aggregate.

The assembly of the AIE dots began with the synthesis of organic molecules, specifically 2,3-bis(4- (phenyl(4-(1,2,2-triphenylvinyl)phenyl)amino)phenyl)fumaronitrile (TPETPAFN), which the researchers then encapsulated in an insoluble lipid-based matrix. Next, the researchers attached small peptide molecules derived from the human immunodeficiency virus (HIV) to exploit the ability of these peptides to promote efficient uptake of AIE dots into living cells.

"Our AIE dots could track isolated human breast cancer cells in vitro for 10 to 12 generations and glioma tumor cells in vivo in mice for 21 days," says Liu. "They outperform existing commercial inorganic quantum dots, and open a new avenue in the development of advanced fluorescent probes for following biological processes such as carcinogenesis, stem cell transplantation and other cell-based therapies."

Future work by Liu, Tang and co-workers will aim to broaden the application of the organic tracers for their use in conjunction with magnetic resonance and nuclear imaging techniques.


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Kai Li, Wei Qin, Dan Ding, Nikodem Tomczak, Junlong Geng, Rongrong Liu, Jianzhao Liu, Xinhai Zhang, Hongwei Liu, Bin Liu, Ben Zhong Tang. Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing. Scientific Reports, 2013; 3 DOI: 10.1038/srep01150

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Imaging: A brighter future for cell tracking." ScienceDaily. ScienceDaily, 31 August 2013. <www.sciencedaily.com/releases/2013/08/130831110812.htm>.
The Agency for Science, Technology and Research (A*STAR). (2013, August 31). Imaging: A brighter future for cell tracking. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2013/08/130831110812.htm
The Agency for Science, Technology and Research (A*STAR). "Imaging: A brighter future for cell tracking." ScienceDaily. www.sciencedaily.com/releases/2013/08/130831110812.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins