Featured Research

from universities, journals, and other organizations

Pulsating dust cloud dynamics modeled

Date:
September 12, 2013
Source:
Springer Science+Business Media
Summary:
New research outlines a new design of spatio-temporal models of astrophysical plasmas. The birth of stars is an event that eludes intuitive understanding. It is the collapse of dense molecular clouds under their own weight that offers the best sites of star formation. Now, astronomers have proposed a new model for investigating molecular cloud fluctuations at sites of star formation and thus are able to study their pulsational dynamics.

The birth of stars is an event that eludes intuitive understanding. It is the collapse of dense molecular clouds under their own weight that offers the best sites of star formation. Now, Pralay Kumar Karmakar from the Department of Physics at Tezpur University, Assam province, India, and his colleague have proposed a new model for investigating molecular cloud fluctuations at sites of star formation and thus are able to study their pulsational dynamics, in a paper published in The European Physical Journal D.

Dust molecular clouds are a type of astrophysical plasmas, which are composed of a primordial soup of positively and negatively charged particles. Scientists have long known that these exhibit collective pulsating or wave-like behaviour. Both experimental observations via spacecraft, satellites, and sophisticated imaging detection systems have confirmed it. What is more, many theoretical models provide a simplified description of such observations. But the complex dynamics are still not clearly understood.

In particular, the pulsating dynamics of inhomogeneous molecular clouds that periodically undergo both self-gravitational contraction due to the weight of the massive dust grains, and electrostatic expansion resulting from the interaction of dust grains of the same electric charge, are captivating scientists.

Karmakar and Bhupen Borah designed a model for investigating the cloud fluctuations with charge-varying grains, as a function of weight and charge interaction (referred to as nonlinear gravito-electrostatic coupling). The principal factors they took into account include dust-charge fluctuations, relevant convective nonlinearities and all the complex collisional processes.

They then carried out a detailed shape analysis to characterise these clouds on the astrophysical scale. This approach helps to elucidate basic features of the collapse of clouds under their own weight, the formation and evolution of stars, galactic structures and other cluster-like astrophysical objects in diverse space and plasma environments.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. P. K. Karmakar, B. Borah. Nonlinear pulsational eigenmodes of a planar collisional dust molecular cloud with grain-charge fluctuation. The European Physical Journal D, 2013; 67 (9) DOI: 10.1140/epjd/e2013-40165-7

Cite This Page:

Springer Science+Business Media. "Pulsating dust cloud dynamics modeled." ScienceDaily. ScienceDaily, 12 September 2013. <www.sciencedaily.com/releases/2013/09/130912092551.htm>.
Springer Science+Business Media. (2013, September 12). Pulsating dust cloud dynamics modeled. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2013/09/130912092551.htm
Springer Science+Business Media. "Pulsating dust cloud dynamics modeled." ScienceDaily. www.sciencedaily.com/releases/2013/09/130912092551.htm (accessed July 28, 2014).

Share This




More Space & Time News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

This Week @ NASA, July 25, 2014

This Week @ NASA, July 25, 2014

NASA (July 25, 2014) Apollo 11 celebration, Next Giant Leap anticipation, ISS astronauts appear in the House and more... Video provided by NASA
Powered by NewsLook.com
Space to Ground: Coming and Going

Space to Ground: Coming and Going

NASA (July 25, 2014) One station cargo ship leaves, another arrives, aquatic research and commercial spinoffs. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
How A Solar Flare Could Have Wrecked Earth's Electronics

How A Solar Flare Could Have Wrecked Earth's Electronics

Newsy (July 25, 2014) Researchers say if Earth had been a week earlier in its orbit around the sun, it would have taken a direct hit from a 2012 coronal mass ejection. Video provided by Newsy
Powered by NewsLook.com
Raw: ISS Cargo Ship Launches in Kazakhstan

Raw: ISS Cargo Ship Launches in Kazakhstan

AP (July 23, 2014) The Progress 56 cargo ship launched from the Baikonur Cosmodrome in Kazakhstan Wednesday. NASA says it will deliver cargo and crew supplies to the International Space Station. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins