Featured Research

from universities, journals, and other organizations

Biochemists resurrect 'molecular fossils': Findings challenge assumptions about origins of life

Date:
September 13, 2013
Source:
University of North Carolina School of Medicine
Summary:
Before there was life on Earth, there were molecules. A primordial soup. At some point a few specialized molecules began replicating. This self-replication, scientists agree, kick-started a biochemical process that would lead to the first organisms. But exactly how that happened -- how those molecules began replicating -- has been one of science's enduring mysteries. Biochemists now offer an intriguing new view on how life began.

Artist's conception of DNA (stock image).
Credit: © Sergey Nivens / Fotolia

Before there was life on Earth, there were molecules. A primordial soup. At some point a few specialized molecules began replicating. This self-replication, scientists agree, kick-started a biochemical process that would lead to the first organisms. But exactly how that happened -- how those molecules began replicating -- has been one of science's enduring mysteries.

Now, research from UNC School of Medicine biochemist Charles Carter, PhD, appearing in the September 13 issue of the Journal of Biological Chemistry, offers an intriguing new view on how life began. Carter's work is based on lab experiments during which his team recreated ancient protein enzymes that likely played a vital role in helping create life on Earth. Carter's finding flies in the face of the widely-held theory that Ribonucleic Acid (RNA) self-replicated without the aid of simple proteins and eventually led to life as we know it.

In the early 1980s, researchers found that ribozymes -- RNA enzymes -- act as catalysts. It was evidence that RNA can be both the blueprints and the chemical catalysts that put those blueprints into action. This finding led to the "RNA World" hypothesis, which posits that RNA alone triggered the rise of life from a sea of molecules.

But for the hypothesis to be correct, ancient RNA catalysts would have had to copy multiple sets of RNA blueprints nearly as accurately as do modern-day enzymes. That's a hard sell; scientists calculate that it would take much longer than the age of the universe for randomly generated RNA molecules to evolve sufficiently to achieve the modern level of sophistication. Given Earth's age of 4.5 billion years, living systems run entirely by RNA could not have reproduced and evolved either fast or accurately enough to give rise to the vast biological complexity on Earth today.

"The RNA world hypothesis is extremely unlikely," said Carter. "It would take forever."

Moreover, there's no proof that such ribozymes even existed billions of years ago. To buttress the RNA World hypothesis, scientists use 21st century technology to create ribozymes that serve as catalysts. "But most of those synthetic ribozymes," Carter said, "bear little resemblance to anything anyone has ever isolated from a living system."

Carter, who has been an expert in ancient biochemistry for four decades, took a different approach. His experiments are deeply embedded in consensus biology.

Our genetic code is translated by two super-families of modern-day enzymes. Carter's research team created and superimposed digital three-dimensional versions of the two super-families to see how their structures aligned. Carter found that all the enzymes have virtually identical cores that can be extracted to produce "molecular fossils" he calls Urzymes -- Ur meaning earliest or original. The other parts, he said, are variations that were introduced later, as evolution unfolded.

These two Urzymes are as close as scientists have gotten to the actual ancient enzymes that would have populated Earth billions of years ago.

"Once we identified the core part of the enzyme, we cloned it and expressed it," Carter said. "Then we wanted to see if we could stabilize it and determine if it had any biochemical activity." They could and it did.

Both Urzymes are very good at accelerating the two reactions necessary to translate the genetic code.

"Our results suggest that there were very active protein enzymes very early in the generation of life, before there were organisms," Carter said. "And those enzymes were very much like the Urzymes we've made."

The finding also suggests that Urzymes evolved from even simpler ancestors -- tiny proteins called peptides. And over time those peptides co-evolved with RNA to give rise to more complex life forms.

In this "Peptide-RNA World" scenario, RNA would have contained the instructions for life while peptides would have accelerated key chemical reactions to carry out those instructions.

"To think that these two Urzymes might have launched protein synthesis before there was life on Earth is totally electrifying," Carter said. "I can't imagine a much more exciting result to be working on, if one is interested in the origin of life."

The study leaves open the question of exactly how those primitive systems managed to replicate themselves -- something neither the RNA World hypothesis nor the Peptide-RNA World theory can yet explain. Carter, though, is extending his research to include polymerases -- enzymes that actually assemble the RNA molecule. Finding an Urzyme that serves that purpose would help answer that question.

The study's co-authors include Li Li of UNC and Christopher Francklyn of the University of Vermont, Burlington.


Story Source:

The above story is based on materials provided by University of North Carolina School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. L. Li, C. Francklyn, C. W. Carter. Aminoacylating Urzymes Challenge the RNA World Hypothesis. Journal of Biological Chemistry, 2013; 288 (37): 26856 DOI: 10.1074/jbc.M113.496125

Cite This Page:

University of North Carolina School of Medicine. "Biochemists resurrect 'molecular fossils': Findings challenge assumptions about origins of life." ScienceDaily. ScienceDaily, 13 September 2013. <www.sciencedaily.com/releases/2013/09/130913185848.htm>.
University of North Carolina School of Medicine. (2013, September 13). Biochemists resurrect 'molecular fossils': Findings challenge assumptions about origins of life. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2013/09/130913185848.htm
University of North Carolina School of Medicine. "Biochemists resurrect 'molecular fossils': Findings challenge assumptions about origins of life." ScienceDaily. www.sciencedaily.com/releases/2013/09/130913185848.htm (accessed September 16, 2014).

Share This



More Fossils & Ruins News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Explore Shipwrecks Off Calif. Coast

Researchers Explore Shipwrecks Off Calif. Coast

AP (Sep. 16, 2014) — Federal researchers are exploring more than a dozen underwater sites where they believe ships sank in the treacherous waters west of San Francisco in the decades following the Gold Rush. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Museum Traces Fragments of Star-Spangled Banner

Museum Traces Fragments of Star-Spangled Banner

AP (Sep. 12, 2014) — As the Star-Spangled Banner celebrates its bicentennial, Smithsonian curators are still uncovering fragments of the original flag that inspired Francis Scott Key's poem. (Sept. 12) Video provided by AP
Powered by NewsLook.com
Spinosaurus Could Be First Semi-Aquatic Dinosaur

Spinosaurus Could Be First Semi-Aquatic Dinosaur

Newsy (Sep. 11, 2014) — New research has shown that the Spinosaurus, the largest carnivorous dinosaur, might have been just as well suited for life in the water as on land. Video provided by Newsy
Powered by NewsLook.com
Meet Spinosaurus, the First-Known Water Dinosaur

Meet Spinosaurus, the First-Known Water Dinosaur

AFP (Sep. 11, 2014) — Spinosaurus aegyptiacus was adapted for both land and water, and an exhibit featuring a life-sized model, based on new fossils unearthed in eastern Morocco, opens at the National Geographic Museum in Washington on Friday. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins