Featured Research

from universities, journals, and other organizations

Sensors allow for efficient irrigation, more control over plant growth

Date:
September 16, 2013
Source:
American Society for Horticultural Science
Summary:
In a recently published study, increased irrigation volume led to increased growth; plant height also increased with increasing water content threshold in all studies. Results of the experiments indicated that sensor-controlled irrigation is feasible, and that water content thresholds can be adjusted to control plant growth.

As water use and runoff regulations become more stringent and concerns about dwindling water supplies become more of an issue, finding ways to increase the efficiency of water use for horticultural operations is crucial. A new study contains answers that can help horticultural growers address regulatory and cost concerns. Amanda Bayer, lead author of the research study, explained that most often horticultural best management practices (BMPs) are used to conserve water, but that BMPs do not account for water requirements of plants. "Soil moisture sensors can be used along with an automated irrigation system to irrigate when substrate volumetric water content drops below a set threshold, allowing for precise irrigation control and improved water conservation compared with traditional irrigation practices," Bayer said. Bayer and colleagues Imran Mahbub, Matthew Chappell, John Ruter, and Marc van Iersel from the Department of Horticulture at the University of Georgia published their research findings in the August 2013 issue of HortScience.

"We designed a project to quantify the growth of Hibiscus acetosella 'Panama Red' in response to various soil water content thresholds," explained Bayer. The team performed the experiments in a greenhouse and on outdoor nursery pads using soil moisture sensors to maintain soil water content above specific thresholds. Greenhouse studies were conducted at the University of Georgia in Athens, while the nursery studies took place at the University of Georgia Horticulture Farm in Watkinsville and at the University of Georgia Tifton Campus. Bayer explained that the studies were conducted in two different U.S. Department of Agriculture hardiness zones (Tifton 8b, Watkinsville 8a) to compare plant responses under different environmental conditions.

"We found that plant growth increased with increasing water content threshold in both greenhouse and nursery settings," the authors said. The experimental results revealed that the effect of substrate volumetric water content threshold on dry weight, plant height, and compactness shows the potential for commercial nurseries to utilize sensor-controlled irrigation systems to control plant growth, and potentially to reduce the need for pruning. Bayer added that, along with reduced water use and growth control, more efficient soil moisture sensor-controlled irrigation could greatly reduce leaching, allowing for reductions in fertilizer applications.


Story Source:

The above story is based on materials provided by American Society for Horticultural Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Amanda Bayer, Imran Mahbub, Matthew Chappell, John Ruter and Marc W. Van Iersel. Water Use and Growth of Hibiscus acetosella ‘Panama Red’ Grown with a Soil Moisture Sensor-controlled Irrigation System. HortScience, August 2013

Cite This Page:

American Society for Horticultural Science. "Sensors allow for efficient irrigation, more control over plant growth." ScienceDaily. ScienceDaily, 16 September 2013. <www.sciencedaily.com/releases/2013/09/130916122129.htm>.
American Society for Horticultural Science. (2013, September 16). Sensors allow for efficient irrigation, more control over plant growth. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2013/09/130916122129.htm
American Society for Horticultural Science. "Sensors allow for efficient irrigation, more control over plant growth." ScienceDaily. www.sciencedaily.com/releases/2013/09/130916122129.htm (accessed August 27, 2014).

Share This




More Plants & Animals News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Firefighters Rescue Puppy Stuck in Tire

Raw: Firefighters Rescue Puppy Stuck in Tire

AP (Aug. 26, 2014) It took Houston firefighters more than an hour to free a puppy who got its head stuck in a tire. (Aug. 26) Video provided by AP
Powered by NewsLook.com
Have You Ever Been 'Sleep Drunk?' 1 in 7 Has

Have You Ever Been 'Sleep Drunk?' 1 in 7 Has

Newsy (Aug. 26, 2014) A study published in the journal "Neurology" interviewed more than 19,000 people and found 15 percent suffer from being "sleep drunk." Video provided by Newsy
Powered by NewsLook.com
Great White Shark Spotted Off Massachusetts Coast

Great White Shark Spotted Off Massachusetts Coast

Reuters - US Online Video (Aug. 26, 2014) A great white shark is spotted off the shore at Duxbury beach in Massachusetts forcing beach goers out of the water. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Raw: Elk Wanders Into German Office Building

Raw: Elk Wanders Into German Office Building

AP (Aug. 25, 2014) A young bull elk wandered inside the office building of a company in Dresden, Germany on Monday. The elk became trapped between a wall and glass windows while rescue workers tried to rescue him safely. (Aug. 25) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins