Featured Research

from universities, journals, and other organizations

Birth of Earth's continents: New research points to crust stacking, rather than upwelling of hot material

Date:
September 16, 2013
Source:
University of Calgary
Summary:
New research provides strong evidence against continent formation above a hot mantle plume, similar to an environment that presently exists beneath the Hawaiian Islands.

New research led by a University of Calgary geophysicist provides strong evidence against continent formation above a hot mantle plume, similar to an environment that presently exists beneath the Hawaiian Islands.

The analysis, published this month in Nature Geoscience, indicates that the nuclei of Earth's continents formed as a byproduct of mountain-building processes, by stacking up slabs of relatively cold oceanic crust. This process created thick, strong 'keels' in Earth's mantle that supported the overlying crust and enabled continents to form.

The scientific clues leading to this conclusion derived from computer simulations of the slow cooling process of continents, combined with analysis of the distribution of diamonds in the deep Earth.

The Department of Geoscience's Professor David Eaton developed computer software to enable numerical simulation of the slow diffusive cooling of Earth's mantle over a time span of billions of years.

Working in collaboration with former graduate student, Assistant Professor Claire Perry from the Universite du Quebec a Montreal, Eaton relied on the geological record of diamonds found in Africa to validate his innovative computer simulations.

"For the first time, we are able to quantify the thermal evolution of a realistic 3D Earth model spanning billions of years from the time continents were formed," states Perry.

Mantle plumes consist of an upwelling of hot material within Earth's mantle. Plumes are thought to be the cause of some volcanic centres, especially those that form a linear volcanic chain like Hawaii. Diamonds, which are generally limited to the deepest and oldest parts of the continental mantle, provide a wealth of information on how the host mantle region may have formed.

"Ancient mantle keels are relatively strong, cold and sometimes diamond-bearing material. They are known to extend to depths of 200 kilometres or more beneath the ancient core regions of continents," explains Professor David Eaton. "These mantle keels resisted tectonic recycling into the deep mantle, allowing the preservation of continents over geological time and providing suitable environments for the development of the terrestrial biosphere."

His method takes into account important factors such as dwindling contribution of natural radioactivity to the heat budget, and allows for the calculation of other properties that strongly influence mantle evolution, such as bulk density and rheology (mechanical strength).

"Our computer model emerged from a multi-disciplinary approach combining classical physics, mathematics and computer science," explains Eaton. "By combining those disciplines, we were able to tackle a fundamental geoscientific problem, which may open new doors for future research."

This work provides significant new scientific insights into the formation and evolution of continents on Earth.


Story Source:

The above story is based on materials provided by University of Calgary. Note: Materials may be edited for content and length.


Journal Reference:

  1. David W. Eaton, H. K. Claire Perry. Ephemeral isopycnicity of cratonic mantle keels. Nature Geoscience, 2013; DOI: 10.1038/ngeo1950

Cite This Page:

University of Calgary. "Birth of Earth's continents: New research points to crust stacking, rather than upwelling of hot material." ScienceDaily. ScienceDaily, 16 September 2013. <www.sciencedaily.com/releases/2013/09/130916122133.htm>.
University of Calgary. (2013, September 16). Birth of Earth's continents: New research points to crust stacking, rather than upwelling of hot material. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2013/09/130916122133.htm
University of Calgary. "Birth of Earth's continents: New research points to crust stacking, rather than upwelling of hot material." ScienceDaily. www.sciencedaily.com/releases/2013/09/130916122133.htm (accessed September 22, 2014).

Share This



More Earth & Climate News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Hundreds of Thousands Hit NYC Streets to Protest Climate Change

Hundreds of Thousands Hit NYC Streets to Protest Climate Change

AFP (Sep. 22, 2014) Celebrities, political leaders and the masses rallied in New York and across the globe demanding urgent action on climate change, with organizers saying 600,000 people hit the streets. Duration: 01:19 Video provided by AFP
Powered by NewsLook.com
Inside London's Massive Sewer Tunnel Project

Inside London's Massive Sewer Tunnel Project

AP (Sep. 22, 2014) Billions of dollars are being spent on a massive super sewer to take away London's vast output of waste, which is endangering the River Thames. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Washed-Up 'Alien Hairballs' Are Actually Algae

Washed-Up 'Alien Hairballs' Are Actually Algae

Newsy (Sep. 22, 2014) Green balls of algae washed up on Sydney, Australia's Dee Why Beach. Video provided by Newsy
Powered by NewsLook.com
Was The Biggest Climate March In History Underreported?

Was The Biggest Climate March In History Underreported?

Newsy (Sep. 22, 2014) The People's Climate March in New York City drew more than 300,000 people, possibly a record-breaking number. Was the march underreported? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins