Featured Research

from universities, journals, and other organizations

Spinning CDs to clean sewage water

Date:
September 23, 2013
Source:
The Optical Society
Summary:
Audio CDs, all the rage in the '90s, seem increasingly obsolete in a world of MP3 files and iPods, leaving many music lovers with the question of what to do with their extensive compact disk collections. While you could turn your old disks into a work of avant-garde art, researchers in Taiwan have come up with a more practical application: breaking down sewage.

This scanning electron microscope image shows tiny nanorods growing on the disk.
Credit: Din Ping Tsai, National Taiwan University

Audio CDs, all the rage in the '90s, seem increasingly obsolete in a world of MP3 files and iPods, leaving many music lovers with the question of what to do with their extensive compact disk collections. While you could turn your old disks into a work of avant-garde art, researchers in Taiwan have come up with a more practical application: breaking down sewage. The team will present its new wastewater treatment device at the Optical Society's (OSA) Annual Meeting, Frontiers in Optics (FiO) 2013, being held Oct. 6-10 in Orlando, Fla.

"Optical disks are cheap, readily available, and very commonly used," says Din Ping Tsai, a physicist at National Taiwan University. Close to 20 billion disks are already manufactured annually, the researchers note, so using old disks for water treatment might even be a way to cut down on waste.

Tsai and his colleagues from National Taiwan University, National Applied Research Laboratories in Taiwan, and the Research Center for Applied Sciences in Taiwan used the large surface area of optical disks as a platform to grow tiny, upright zinc oxide nanorods about a thousandth the width of a human hair. Zinc oxide is an inexpensive semiconductor that can function as a photocatalyst, breaking apart organic molecules like the pollutants in sewage when illuminated with UV light.

While other researchers have experimented with using zinc oxide to degrade organic pollutants, Tsai's team is the first to grow the photocatalyst on an optical disk. Because the disks are durable and able to spin quickly, contaminated water that drips onto the device spreads out in a thin film that light can easily pass through, speeding up the degradation process.

The Taiwanese team's complete wastewater treatment device is approximately one cubic foot in volume. In addition to the zinc oxide-coated optical disk, the device consists of a UV light source and a system that recirculates the water to further break down the pollutants.

The research team tested the reactor with a solution of methyl orange dye, a model organic compound often used to evaluate the speed of photocatalytic reactions. After treating a half-liter solution of dye for 60 minutes, they found that over 95 percent of the contaminants had been broken down. The device can treat 150 mL of waste water per minute, the researchers say.

The spinning disk reactor is small, consumes little power, and processes contaminated water more efficiently than other photocatalytic wastewater treatment methods, Tsai says. The device could be used on a small scale to clean water contaminated with domestic sewage, urban run-off, industrial effluents, and farm waste. Going forward, the team is also working on ways to increase the efficiency of the reactor, and Tsai estimates that the system could soon be improved to work even faster, perhaps by creating layers of stacked disks.


Story Source:

The above story is based on materials provided by The Optical Society. Note: Materials may be edited for content and length.


Cite This Page:

The Optical Society. "Spinning CDs to clean sewage water." ScienceDaily. ScienceDaily, 23 September 2013. <www.sciencedaily.com/releases/2013/09/130923175932.htm>.
The Optical Society. (2013, September 23). Spinning CDs to clean sewage water. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2013/09/130923175932.htm
The Optical Society. "Spinning CDs to clean sewage water." ScienceDaily. www.sciencedaily.com/releases/2013/09/130923175932.htm (accessed October 20, 2014).

Share This



More Earth & Climate News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Powerful Hurricane Gonzalo Heads to Bermuda

Raw: Powerful Hurricane Gonzalo Heads to Bermuda

AP (Oct. 17, 2014) Hurricane Gonzalo pounded Bermuda with wind and heavy surf on Friday, bearing down on the tiny British territory as a powerful Category 3 storm that could raise coastal seas as much as 10 feet. (Oct. 17) Video provided by AP
Powered by NewsLook.com
So, Kangaroos Didn't Always Hop

So, Kangaroos Didn't Always Hop

Newsy (Oct. 16, 2014) Researchers believe an extinct kangaroo species weighed 500 pounds or more and couldn't hop. Video provided by Newsy
Powered by NewsLook.com
Hurricane Gonzalo Is A Category 4 And Heading To Bermuda

Hurricane Gonzalo Is A Category 4 And Heading To Bermuda

Newsy (Oct. 16, 2014) Powerful hurricane could hit Bermuda this weekend, and even if it misses it will likely do some damage. Video provided by Newsy
Powered by NewsLook.com
The Largest Volcano In Centuries Is Spewing Toxic Gas

The Largest Volcano In Centuries Is Spewing Toxic Gas

Newsy (Oct. 16, 2014) One of the largest volcanic eruptions in centuries is occurring on Iceland. The volcano Bardarbunga is producing high levels of sulfur dioxide. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins