Featured Research

from universities, journals, and other organizations

'Walking droplets': Strange behavior of bouncing drops demonstrates pilot-wave dynamics in action

Date:
October 1, 2013
Source:
American Institute of Physics (AIP)
Summary:
A research team recently discovered that it’s possible to make a tiny fluid droplet levitate on the surface of a vibrating bath, walking or bouncing across, propelled by its own wave field. Surprisingly, these walking droplets exhibit certain features previously thought to be exclusive to the microscopic quantum realm. This finding of quantum-like behavior inspired a team of researchers to examine the dynamics of these walking droplets.

Scientists have discovered that it's possible to make a tiny fluid droplet levitate on the surface of a vibrating bath, walking or bouncing across, propelled by its own wave field. Surprisingly, these walking droplets exhibit certain features previously thought to be exclusive to the microscopic quantum realm.
Credit: AIP

A research team led by Yves Couder at the Université Paris Diderot recently discovered that it's possible to make a tiny fluid droplet levitate on the surface of a vibrating bath, walking or bouncing across, propelled by its own wave field. Surprisingly, these walking droplets exhibit certain features previously thought to be exclusive to the microscopic quantum realm.

This finding of quantum-like behavior inspired another team of researchers, at the Massachusetts Institute of Technology (MIT), to examine the dynamics of these walking droplets. They describe their findings in the journal Physics of Fluids.

"This walking droplet system represents the first realization of a pilot-wave system. Its great charm is that it can be achieved with a tabletop experiment and that the walking droplets are plainly visible," explained John Bush, professor of applied mathematics in the Department of Mathematics at MIT. "In addition to being a rich, subtle dynamical system worthy of interest in its own right, it gives us the first opportunity to view pilot-wave dynamics in action."

The dynamics of the walking droplets are reminiscent of the pilot-wave dynamics proposed by Louis de Broglie in 1926 to describe the motion of quantum particles, in which microscopic particles such as electrons move in resonance with an accompanying guiding wave. Pilot-wave theory wasn't widely accepted and was superseded by the Copenhagen Interpretation of quantum mechanics, in which the macroscopic and microscopic worlds are philosophically distinct.

"Of course, if we ever hope to establish a link with quantum dynamics, it's important to first understand the subtleties of this fluid system," said Bush. "Our recent article is the culmination of work spearheaded by my graduate student, Jan Molacek, who developed a theoretical model to describe the dynamics of bouncing and walking droplets by answering questions such as: Which droplets can bounce? Which can walk? In what manner do they walk and bounce? When they walk, how fast do they go?"

In the team's article, Molacek's theoretical developments were compared to the results of a careful series of experiments performed by Řistein Wind-Willassen, a graduate student visiting from the Danish Technical University, on an experimental rig designed by Bush's graduate student, Dan Harris.

"Molacek's work also led to a trajectory equation for walking droplets, which is currently being explored by my graduate student Anand Oza," Bush said. "Our next step is to use this equation to better understand the emergence of quantization and wave-like statistics, both hallmarks of quantum mechanics, in this hydrodynamic pilot-wave system."

The researchers will now seek and explore new quantum analogs, with the ultimate goal of understanding the potential and limitations of this walking-droplet system as a quantum analog system.


Story Source:

The above story is based on materials provided by American Institute of Physics (AIP). Note: Materials may be edited for content and length.


Journal Reference:

  1. Oistein Wind-Willassen, Jan Moláček, Daniel M. Harris, John W. M. Bush. Exotic states of bouncing and walking droplets. Physics of Fluids, 2013; 25 (8): 082002 DOI: 10.1063/1.4817612

Cite This Page:

American Institute of Physics (AIP). "'Walking droplets': Strange behavior of bouncing drops demonstrates pilot-wave dynamics in action." ScienceDaily. ScienceDaily, 1 October 2013. <www.sciencedaily.com/releases/2013/10/131001141216.htm>.
American Institute of Physics (AIP). (2013, October 1). 'Walking droplets': Strange behavior of bouncing drops demonstrates pilot-wave dynamics in action. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2013/10/131001141216.htm
American Institute of Physics (AIP). "'Walking droplets': Strange behavior of bouncing drops demonstrates pilot-wave dynamics in action." ScienceDaily. www.sciencedaily.com/releases/2013/10/131001141216.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins