Featured Research

from universities, journals, and other organizations

Cancer genome atlas exposes more secrets of lethal brain tumor

Date:
October 10, 2013
Source:
University of Texas M. D. Anderson Cancer Center
Summary:
Scientists paint a more detailed picture of the genomic abnormalities that drive glioblastoma multiforme. Rich data set will underpin research and treatment advances.

When The Cancer Genome Atlas launched its massively collaborative approach to organ-by-organ genomic analysis of cancers, the brain had both the benefit, and the challenge, of going first.

Related Articles


TCGA ganged up on glioblastoma multiforme (GBM), the most common and lethal of brain tumors, with more than 100 scientists from 14 institutions tracking down the genomic abnormalities that drive GBM.

Five years later, older and wiser, TCGA revisited glioblastoma, producing a broader, deeper picture of the drivers -- and potential therapeutic targets -- of the disease published in the Oct. 10 issue of Cell.

"The first paper in 2008 characterized glioblastoma in important new ways and illuminated the path for all TCGA organ studies that have followed," said senior author Lynda Chin, M.D., professor and chair of Genomic Medicine and scientific director of the Institute for Applied Cancer Science at The University of Texas MD Anderson Cancer Center.

"Our new study reflects major improvements in technology applied to many more tumor samples to more completely characterize the landscape of genomic alterations in glioblastoma," said Chin, who was also co-senior author of the first paper while she was on the faculty of Dana-Farber Cancer Institute in Boston.

"Information generated by this unbiased, data-driven analysis presents new opportunities to discover genomics-based biomarkers, understand disease mechanisms and generate new hypotheses to develop better, targeted therapies," Chin said.

About 23,000 new cases of GBM are predicted in the United States during 2013 and more than 14,000 people expected to die of the disease. Most patients die within 15 months of diagnosis.

Well of rich, detailed data will nurture better treatment

New information about genetic mutations, deletions and amplifications; gene expression and epigenetic regulation; structural changes due to chromosomal alterations, proteomic effects and the molecular networks that drive GBM make for a deep, broad dataset that will underpin research and clinical advances for years to come.

"Our main contribution is this tremendous resource for the GBM research community, which is already heavily relying on the earlier TCGA study," said co-lead author Roeland Verhaak, Ph.D., assistant professor of Bioinformatics and Computational Biology at MD Anderson. "Whatever new treatments people come up with for GBM, I'm very confident that their discovery and development will in some way have benefited from this rich and detailed data set," he said.

The Cell paper describes analysis of tumor samples and molecular data from 599 patients at 17 study sites. Detailed clinical information including treatment and survival was available for almost all cases.

New targetable mutations

In addition to confirming significantly mutated genes discovered earlier, such as the tumor suppressors TP53, PTEN and RB1 and the oncogene PIK3CA, the analysis identified 61 new mutated genes. The most frequent mutations occurred in from 1.7 to 9 percent of cases.

Two of these, BRAF and FGFR, might have more immediate clinical relevance, Verhaak noted. MD Anderson neuro-oncologists are checking to see if patients have these mutations. Drugs are available to address those variations now, Verhaak said. The BRAF point mutation in GBM is the same commonly found in melanoma, which is treated by a new class of drugs.

More twists and turns for EGFR

The larger data set and an improved analytical algorithm allowed major refinement of gene amplification and deletion information. For example, common amplification events were found to occur more frequently than previously known, including amplification of the epidermal growth factor receptor (EGFR) on chromosome 7.

EGFR is both amplified and mutated frequently in GBM; yet therapeutic efforts targeting EGFR so far have failed. "We found EGFR is more frequently altered than we already thought," Verhaak said.

Overall, the EGFR gene was mutated, rearranged, amplified or otherwise altered in 57 percent of tumors. Increased EGFR protein levels in GBM cells correlated with the many mechanisms of EGFR alteration, Verhaak said.

A treatment based on EGFR still has great potential, he noted. But strategies to target EGFR will need to address the likelihood that different alterations of EGFR might be present in the same tumor and affect the impact of targeted drugs.

Breaking GBM into molecular subtypes

Verhaak and other researchers in recent years have begun to classify GBM tumors by gene expression. Four such subgroups -- neural, proneural, mesenchymal and classical -- were further characterized by DNA methylation pattern, signaling pathway activity and by clinical measures such as survival and treatment response. Methylation of a gene turns it off.

Understanding the subgroups could establish biomarkers to guide treatment and identify new therapeutic targets.

The team found, for example, that the survival advantage of the proneural subtype depends on a specific DNA methylation pattern known as G-CIMP and that DNA methylation of the MGMT gene may serve as a biomarker of treatment response in the classical subtype.


Story Source:

The above story is based on materials provided by University of Texas M. D. Anderson Cancer Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. CameronW. Brennan, RoelG.W. Verhaak, Aaron McKenna, Benito Campos, Houtan Noushmehr, SofieR. Salama, Siyuan Zheng, Debyani Chakravarty, J.Zachary Sanborn, SamuelH. Berman, Rameen Beroukhim, Brady Bernard, Chang-Jiun Wu, Giannicola Genovese, Ilya Shmulevich, Jill Barnholtz-Sloan, Lihua Zou, Rahulsimham Vegesna, SachetA. Shukla, Giovanni Ciriello, W.K. Yung, Wei Zhang, Carrie Sougnez, Tom Mikkelsen, Kenneth Aldape, DarellD. Bigner, ErwinG. VanMeir, Michael Prados, Andrew Sloan, KeithL. Black, Jennifer Eschbacher, Gaetano Finocchiaro, William Friedman, DavidW. Andrews, Abhijit Guha, Mary Iacocca, BrianP. O’Neill, Greg Foltz, Jerome Myers, DanielJ. Weisenberger, Robert Penny, Raju Kucherlapati, CharlesM. Perou, D.Neil Hayes, Richard Gibbs, Marco Marra, GordonB. Mills, Eric Lander, Paul Spellman, Richard Wilson, Chris Sander, John Weinstein, Matthew Meyerson, Stacey Gabriel, PeterW. Laird, David Haussler, Gad Getz, Lynda Chin. The Somatic Genomic Landscape of Glioblastoma. Cell, 2013; 155 (2): 462 DOI: 10.1016/j.cell.2013.09.034

Cite This Page:

University of Texas M. D. Anderson Cancer Center. "Cancer genome atlas exposes more secrets of lethal brain tumor." ScienceDaily. ScienceDaily, 10 October 2013. <www.sciencedaily.com/releases/2013/10/131010124823.htm>.
University of Texas M. D. Anderson Cancer Center. (2013, October 10). Cancer genome atlas exposes more secrets of lethal brain tumor. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2013/10/131010124823.htm
University of Texas M. D. Anderson Cancer Center. "Cancer genome atlas exposes more secrets of lethal brain tumor." ScienceDaily. www.sciencedaily.com/releases/2013/10/131010124823.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins