Featured Research

from universities, journals, and other organizations

Crystals in Picabo's rocks point to 'recycled' super-volcanic magma chambers

Date:
October 11, 2013
Source:
University of Oregon
Summary:
An examination of crystals of zircon in rhyolites, an igneous rock, from the Snake River Plain solidifies evidence for a new view of the life cycle of super-volcanic eruptions, and in tandem with previous work suggests another super-eruption in the Yellowstone volcanic field is unlikely for another million years, say scientists.

Map showing Picabo and Heise fields.
Credit: University of Oregon

A thorough examination of tiny crystals of zircon, a mineral found in rhyolites, an igneous rock, from the Snake River Plain has solidified evidence for a new way of looking at the life cycle of super-volcanic eruptions in the long track of the Yellowstone hotspot, say University of Oregon scientists.

Related Articles


The pattern emerging from new and previous research completed in the last five years under a National Science Foundation career award, said UO geologist Ilya N. Bindeman, is that another super-eruption from the still-alive Yellowstone volcanic field is less likely for the next few million years than previously thought (see related story, "Not in a million years, says Oregon geologist about Yellowstone eruption"). The last eruption 640,000 years ago created the Yellowstone Caldera and the Lava Creek Tuff in what is now Yellowstone National Park.

The Yellowstone hotspot creates a conveyor belt style of volcanism because of the southwest migration of the North American plate at 2-4 centimeters (about .8 to 1.6 inches) annually over the last 16 million years of volcanism. Due to the movement of the North American plate, the plume interaction with the crust leaves footprints in the form of caldera clusters, in what is now the Snake River Plain, Bindeman said.

The Picabo volcanic field of southern Idaho, described in a new paper by a six-member team, was active between 10.4 and 6.6 million years ago and experienced at least three, and maybe as many as six, violent caldera-forming eruptions. The field has been difficult to assess, said lead author Dana Drew, a UO graduate student, because the calderas have been buried by as much as two kilometers of basalt since its eruption cycle died.

The work at Picabo is detailed in a paper online ahead of publication in the journal Earth and Planetary Science Letters.

The team theorized that basalt from the mantle plume, rocks from Earth's crust and previously erupted volcanoes are melted together to form the rhyolites erupted in the Snake River Plain. Before each eruption, rhyolite magma is stored in dispersed pockets throughout the upper crust, which are later mixed together, according to geochemical evidence. "We think that this batch-assembly process is an important part of caldera-forming eruptions, and generating rhyolites in general," Drew said.

In reaching their conclusions, Drew and colleagues analyzed radiogenic and stable isotopic data -- specifically oxygen and hafnium -- in zircons detected in rhyolites found at the margins of the Picabo field and from a deep borehole. That data, in combination with whole rock geochemistry and zircon uranium-lead geochronology helped provide a framework to understand the region's ancient volcanic past.

Previous research on the related Heise volcanic field east of Picabo yielded similar results. "There is a growing database of the geochemistry of rhyolites in the Yellowstone hotspot track," Drew said. "Adding Picabo provides a missing link in the database.

Drew and colleagues, through their oxygen isotope analyses, identified a wide diversity of oxygen ratios occurring in erupted zircons near the end of the Picabo volcanic cycle. Such oxygen ratios are referred to as delta-O-18 signatures based on oxygen 18 levels relative to seawater. (Oxygen 18 contains eight protons and 10 neutrons; Oxygen 16, with eight protons and eight neutrons, is the most commonly found form of oxygen in nature.)

The approach provided a glimpse into the connection of surface and subsurface processes at a caldera cluster. The interaction of erupted rhyolite with groundwater and surface water causes hydrothermal alteration and the change in oxygen isotopes, thereby providing a fingerprinting tool for the level of hydrothermal alteration, Drew said.

"Through the eruptive sequence, we begin to generate lower delta-O-18 signatures of the magmas and, with that, we also see a more diverse signature," Drew said. "By the time of the final eruption there is up to five per mil diversity in the signature recorded in the zircons." The team attributes these signatures to the mixing of diverse magma batches dispersed in the upper crust, which were formed by melting variably hydrothermally altered rocks -- thus diverse delta-O-18 -- after repeated formation of calderas and regional extension or stretching of the crust.

When the pockets of melt are rapidly assembled, the process could be the trigger for caldera forming eruptions, Bindeman said. "That leads to a homogenized magma, but in a way that preserves these zircons of different signatures from the individual pockets of melt," he said. This research, he added, highlights the importance of using new micro-analytical isotopic techniques to relate geochemistry at the crystal-scale to processes occurring at the crustal-wide scale in generating and predicting large-volume rhyolitic eruptions.

"This important research by Dr. Bindeman and his team demonstrates the enormous impact an NSF CAREER award can have," said Kimberly Andrews Espy, vice president for research and innovation and dean of the graduate school at the University of Oregon. "The five-year project is providing new insights into the eruption cycles of the Yellowstone hotspot and helping scientists to better predict future volcanic activity."


Story Source:

The above story is based on materials provided by University of Oregon. Note: Materials may be edited for content and length.


Journal Reference:

  1. Dana L. Drew, Ilya N. Bindeman, Kathryn E. Watts, Axel K. Schmitt, Bin Fu, Michael McCurry. Crustal-scale recycling in caldera complexes and rift zones along the Yellowstone hotspot track: O and Hf isotopic evidence in diverse zircons from voluminous rhyolites of the Picabo volcanic field, Idaho. Earth and Planetary Science Letters, 2013; 381: 63 DOI: 10.1016/j.epsl.2013.08.007

Cite This Page:

University of Oregon. "Crystals in Picabo's rocks point to 'recycled' super-volcanic magma chambers." ScienceDaily. ScienceDaily, 11 October 2013. <www.sciencedaily.com/releases/2013/10/131011094002.htm>.
University of Oregon. (2013, October 11). Crystals in Picabo's rocks point to 'recycled' super-volcanic magma chambers. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2013/10/131011094002.htm
University of Oregon. "Crystals in Picabo's rocks point to 'recycled' super-volcanic magma chambers." ScienceDaily. www.sciencedaily.com/releases/2013/10/131011094002.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com
Ivory Trade Boom Swamps Law Efforts

Ivory Trade Boom Swamps Law Efforts

Reuters - Business Video Online (Dec. 17, 2014) Demand for ivory has claimed the lives of tens of thousands of African elephants and now a conservation report says the illegal trade is overwhelming efforts to enforce the law. Amy Pollock reports. Video provided by Reuters
Powered by NewsLook.com
Indictments in West Virginia Chemical Spill Case

Indictments in West Virginia Chemical Spill Case

AP (Dec. 17, 2014) A grand jury indicted four former executives of Freedom Industries, the company at the center of the Jan. 9, 2014 chemical spill in Charleston, West Virginia. The spill contaminated the Elk River and the water supply of 300,000 people. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins