Featured Research

from universities, journals, and other organizations

Printable biotechnology

Date:
October 14, 2013
Source:
Karlsruhe Institute of Technology
Summary:
Cells, biological circuits, and individual biomolecules organize themselves and interact with the environment. Use of these capabilities in flexible and economically efficient biotechnological production systems is in the focus of the “Molecular Interaction Engineering” (MIE) project. It is the objective to develop printed biological circuits and catalysts for biologico-technical hybrid systems.

Cells, biological circuits, and individual biomolecules organize themselves and interact with the environment. Use of these capabilities in flexible and economically efficient biotechnological production systems is in the focus of the "Molecular Interaction Engineering" (MIE) project. It is the objective to develop printed biological circuits and catalysts for biologico-technical hybrid systems. MIE will be funded with about EUR 3.5 million by the BMBF.

The capabilities of biological systems are based on specific interactions of molecular components. Due to their molecular fitting accuracy, for instance, enzymes allow for certain chemical reactions only. Some proteins bind via specific molecular interfaces to the DNA or other proteins and control processes in complex organisms. Sensors respond to defined molecular signals from the environment. The MIE project focuses on interactions of molecules, technical interfaces, and surrounding solvents.

"Transfer of complex biological mechanisms to printable systems may result in innovative biotechnologies that might be the basis of a number of industrial applications," Professor Jόrgen Hubbuch, project coordinator at KIT, explains. However, conventional, continuous evolution of biological molecules reaches its limits. The key to innovative developments is the specific, adjusted construction of the interaction of complex biomolecules and fusion of these units with technical interfaces. This requires close cooperation of biology, engineering, chemistry, and physics.

The "Molecular Interaction Engineering" (MIE) project combines methods of biotechnology, structural biology, materials sciences, process engineering, and computer simulation. Work is aimed at developing innovative, flexible, and economically efficient biotechnological production systems for molecules. These might then be used in biohybrid systems integrating biological and electronic components. Biohybrid systems allow for new applications in food technology, molecular biology, medical diagnostics, and pharmaceutical industry.

KIT's Institute of Process Engineering in Life Sciences (BLT), the Institute of Functional Interfaces (IFG), the Institute of Microstructure Technology (IMT), the Institute of Nanotechnology (INT), the Institute of Toxicology and Genetics (ITG), the Institute of Thermal Process Engineering -- Thin Film Technology (TVT-TFT), and the KIT Young Investigator Group "Biohybrid Nanoarrays for Biotechnological and Biomedical Applications" participate in MIE. In 2013, the project is funded with about EUR 3.5 million by the Federal Ministry of Education and Research (BMBF) for a period of five years. A second funding package of EUR 1.6 million has been announced for 2014.

The MIE Helmholtz Research Network was initiated by KIT, Forschungszentrum Jόlich (FZJ), and Helmholtz-Zentrum Geesthacht (HZG) under the Biotechnology 2020+ strategy process of BMBF. The research network is one of four large-scale projects of the four large German non-university research organizations (Fraunhofer Society, Helmholtz Association, Leibniz Association, Max Planck Society) that are to be funded under the Biotechnology 2020+ initiative. Within the framework of the above strategy process, German research organizations agreed on a memorandum of understanding for the interdisciplinary development of a next generation of biotechnological processes.


Story Source:

The above story is based on materials provided by Karlsruhe Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Karlsruhe Institute of Technology. "Printable biotechnology." ScienceDaily. ScienceDaily, 14 October 2013. <www.sciencedaily.com/releases/2013/10/131014094214.htm>.
Karlsruhe Institute of Technology. (2013, October 14). Printable biotechnology. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2013/10/131014094214.htm
Karlsruhe Institute of Technology. "Printable biotechnology." ScienceDaily. www.sciencedaily.com/releases/2013/10/131014094214.htm (accessed August 23, 2014).

Share This




More Plants & Animals News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Endangered Red Wolves Face Uncertain Future

Endangered Red Wolves Face Uncertain Future

AP (Aug. 22, 2014) — A federal judge temporarily banned coyote hunting to save endangered red wolves, but local hunters say that the wolf preservation program does more harm than good. Meanwhile federal officials are reviewing its wolf program in North Carolina. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Farm Resurgence Grows With Younger Crowd

Farm Resurgence Grows With Younger Crowd

AP (Aug. 22, 2014) — New England farms are seeing a surge in younger farm hands as the 'buy local' food movement grows across the country. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) — An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) — According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins