Featured Research

from universities, journals, and other organizations

Defining the graphene family tree: Nomenclature for 2d carbon forms

Date:
October 16, 2013
Source:
Elsevier
Summary:
There has been an intense research interest in all two-dimensional (2D) forms of carbon since Geim and Novoselov's discovery of graphene in 2004. But as the number of such publications rise, so does the level of inconsistency in naming the material of interest. The isolated, single-atom-thick sheet universally referred to as "graphene" may have a clear definition, but when referring to related 2D sheet-like or flake-like carbon forms, many authors have simply defined their own terms to describe their product. This has led to confusion within the literature, where terms are multiply-defined, or incorrectly used. Experts have now published the first recommended nomenclature for 2D carbon forms.

There has been an intense research interest in all two-dimensional (2D) forms of carbon since Geim and Novoselov's discovery of graphene in 2004. But as the number of such publications rise, so does the level of inconsistency in naming the material of interest. The isolated, single-atom-thick sheet universally referred to as "graphene" may have a clear definition, but when referring to related 2D sheet-like or flake-like carbon forms, many authors have simply defined their own terms to describe their product.

Related Articles


This has led to confusion within the literature, where terms are multiply-defined, or incorrectly used. The Editorial Board of Carbon has therefore published the first recommended nomenclature for 2D carbon forms.

The editorial team spent eight months working on setting the definitions. They believe that agreeing on a rational scientific nomenclature could enable more rapid development in the field, and with a "higher degree of common understanding." Editor-in-Chief of Carbon, Professor Robert Hurt (Institute for Molecular and Nanoscale Innovation, School of Engineering, Brown University, USA) succinctly summarizes the need for this work with the phrase: "Precise names promote precise ideas."

A series of basic guiding principles to define the terms was used in the study, where possible making use of established definitions, and clarifying rather than replacing existing terms. The study also recognizes that researchers will want to continue using the word "graphene" in publications, and so have recommended "graphene materials" as the overarching phrase to describe 2D carbons. In this way, the publication offers itself as a practical guide for naming such materials, for carbon scientists in all fields and at all stages in their careers.

One proposal is that all definitions of graphene materials should go beyond crystallography, and should include morphological descriptors for shape and size -- namely the thickness (layer number), lateral dimensions and in-plane shape of these carbon layers.

To move graphene materials beyond the early discovery phase and into applications, internationally-recognized definitions of each carbon form will be needed. In the 1990s, the lack of agreed definitions for nanofibers, nanorods and nanotubes led to several International Standards on the topic, which, when published, brought consistency to the field.

"This study is a great way to open the discussion on graphene terminology, and welcomes any formal standardization efforts for 2D carbons in the future," concludes Prof Hurt c "We would be delighted if the community at large saw sufficient value in the recommendations to use them more broadly."


Story Source:

The above story is based on materials provided by Elsevier. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alberto Bianco, Hui-Ming Cheng, Toshiaki Enoki, Yury Gogotsi, Robert H. Hurt, Nikhil Koratkar, Takashi Kyotani, Marc Monthioux, Chong Rae Park, Juan M.D. Tascon, Jin Zhang. All in the graphene family – A recommended nomenclature for two-dimensional carbon materials. Carbon, 2013; 65: 1 DOI: 10.1016/j.carbon.2013.08.038

Cite This Page:

Elsevier. "Defining the graphene family tree: Nomenclature for 2d carbon forms." ScienceDaily. ScienceDaily, 16 October 2013. <www.sciencedaily.com/releases/2013/10/131016100224.htm>.
Elsevier. (2013, October 16). Defining the graphene family tree: Nomenclature for 2d carbon forms. ScienceDaily. Retrieved November 25, 2014 from www.sciencedaily.com/releases/2013/10/131016100224.htm
Elsevier. "Defining the graphene family tree: Nomenclature for 2d carbon forms." ScienceDaily. www.sciencedaily.com/releases/2013/10/131016100224.htm (accessed November 25, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, November 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Who Will Failed Nuclear Talks Hurt Most?

Who Will Failed Nuclear Talks Hurt Most?

Reuters - Business Video Online (Nov. 25, 2014) With no immediate prospect of sanctions relief for Iran, and no solid progress in negotiations with the West over the country's nuclear programme, Ciara Lee asks why talks have still not produced results and what a resolution would mean for both parties. Video provided by Reuters
Powered by NewsLook.com
Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Reuters - Innovations Video Online (Nov. 25, 2014) A virtual flying enthusiast converts parts of a written-off Airbus aircraft into a working flight simulator in his northern Slovenian home. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins