Featured Research

from universities, journals, and other organizations

New light on star death: Super-luminous supernovae may be powered by magnetars

Date:
October 16, 2013
Source:
Queen's University, Belfast
Summary:
Astronomers have shed new light on the rarest and brightest exploding stars ever discovered in the universe. Their research proposes that the brightest exploding stars, called super-luminous supernovae, are powered by magnetars -- small and incredibly dense neutron stars, with gigantic magnetic fields, that spin hundreds of times a second.

Artist's llustration of a magnetar -- a very dense, rapidly spinning neutron star with a gigantic magnetic field.
Credit: ESO/L.Calηada

Astronomers at Queen's University Belfast have shed new light on the rarest and brightest exploding stars ever discovered in the universe.

The research is published Oct. 17 in Nature. It proposes that the brightest exploding stars, called super-luminous supernovae, are powered by magnetars -- small and incredibly dense neutron stars, with gigantic magnetic fields, that spin hundreds of times a second.

Scientists at Queen's Astrophysics Research Centre observed two super-luminous supernovae -- two of the Universe's brightest exploding stars -- for more than a year. Contrary to existing theories, which suggested that the brightest supernovae are caused by super-massive stars exploding, their findings suggest that their origins may be better explained by a type of explosion within the star's core which creates a smaller but extremely dense and rapidly spinning magnetic star.

Matt Nicholl, a research student at the Astrophysics Research Centre at Queen's School of Mathematics and Physics, is lead author of the study. He said: "Supernovae are several billions of times brighter than the Sun, and in fact are so bright that amateur astronomers regularly search for new ones in nearby galaxies. It has been known for decades that the heat and light from these supernovae come from powerful blast-waves and radioactive material.

"But recently some very unusual supernovae have been found, which are too bright to be explained in this way. They are hundreds of times brighter than those found over the last fifty years and the origin of their extreme properties is quite mysterious.

"Some theoretical physicists predicted these types of explosions came from the biggest stars in the universe destroying themselves in a manner quite like a giant thermonuclear bomb. But our data doesn't match up with this theory.

"In a supernova explosion, the star's outer layers are violently ejected, while its core collapses to form an extremely dense neutron star -- weighing as much as the Sun but only tens of kilometers across. We think that, in a small number of cases, the neutron star has a very strong magnetic field, and spins incredibly quickly -- about 300 times a second. As it slows down, it could transmit the spin energy into the supernova, via magnetism, making it much brighter than normal. The data we have seems to match that prediction almost exactly."

Queen's astronomers led an international team of scientists on the study, using some of the world's most powerful telescopes. Much of the data was collected using Pan-STARRS -- the Panoramic Survey Telescope and Rapid Response System. Based on Mount Haleakala in Hawaii, Pan-STARRS boasts the world's largest digital camera, and can cover an area 40 times the size of the full moon in one shot.

The study is one of the projects funded by a €2.3million grant from the European Research Council. The grant was awarded to Professor Stephen Smartt, Director of Queen's Astrophysics Research Centre, in 2012 to lead an international study to hunt for the Universe's earliest supernovae.

Professor Smartt said: "These are really special supernovae. Because they are so bright, we can use them as torches in the very distant Universe. Light travels through space at a fixed speed, as we look further away, we see snapshots of the increasingly distant past. By understanding the processes that result in these dazzling explosions, we can probe the Universe as it was shortly after its birth. Our goal is to find these supernovae in the early Universe, detecting some of the first stars ever to form and watch them produce the first chemical elements created in the Universe."


Story Source:

The above story is based on materials provided by Queen's University, Belfast. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Nicholl, S. J. Smartt, A. Jerkstrand, C. Inserra, M. McCrum, R. Kotak, M. Fraser, D. Wright, T.-W. Chen, K. Smith, D. R. Young, S. A. Sim, S. Valenti, D. A. Howell, F. Bresolin, R. P. Kudritzki, J. L. Tonry, M. E. Huber, A. Rest, A. Pastorello, L. Tomasella, E. Cappellaro, S. Benetti, S. Mattila, E. Kankare, T. Kangas, G. Leloudas, J. Sollerman, F. Taddia, E. Berger, R. Chornock, G. Narayan, C. W. Stubbs, R. J. Foley, R. Lunnan, A. Soderberg, N. Sanders, D. Milisavljevic, R. Margutti, R. P. Kirshner, N. Elias-Rosa, A. Morales-Garoffolo, S. Taubenberger, M. T. Botticella, S. Gezari, Y. Urata, S. Rodney, A. G. Riess, D. Scolnic, W. M. Wood-Vasey, W. S. Burgett, K. Chambers, H. A. Flewelling, E. A. Magnier, N. Kaiser, N. Metcalfe, J. Morgan, P. A. Price, W. Sweeney, C. Waters. Slowly fading super-luminous supernovae that are not pair-instability explosions. Nature, 2013; 502 (7471): 346 DOI: 10.1038/nature12569

Cite This Page:

Queen's University, Belfast. "New light on star death: Super-luminous supernovae may be powered by magnetars." ScienceDaily. ScienceDaily, 16 October 2013. <www.sciencedaily.com/releases/2013/10/131016132155.htm>.
Queen's University, Belfast. (2013, October 16). New light on star death: Super-luminous supernovae may be powered by magnetars. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2013/10/131016132155.htm
Queen's University, Belfast. "New light on star death: Super-luminous supernovae may be powered by magnetars." ScienceDaily. www.sciencedaily.com/releases/2013/10/131016132155.htm (accessed September 17, 2014).

Share This



More Space & Time News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Boeing, SpaceX to Send Astronauts to Space Station

Boeing, SpaceX to Send Astronauts to Space Station

AFP (Sep. 17, 2014) — NASA selected Boeing and SpaceX on Tuesday to build America's next spacecraft to carry astronauts to the International Space Station (ISS) by 2017, opening the way to a new chapter in human spaceflight. Duration: 01:13 Video provided by AFP
Powered by NewsLook.com
East Coast Treated To Rare Meteor Sighting

East Coast Treated To Rare Meteor Sighting

Newsy (Sep. 16, 2014) — Numerous residents along the East Coast reported seeing a bright meteor flash through the sky Sunday night. Video provided by Newsy
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
NASA Picks Boeing and SpaceX to Ferry Astronauts

NASA Picks Boeing and SpaceX to Ferry Astronauts

AP (Sep. 16, 2014) — NASA is a giant step closer to launching Americans again from U.S. soil. It has announced it has picked Boeing and SpaceX to transport astronauts to the International Space Station in the next few years. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins