Featured Research

from universities, journals, and other organizations

Thin film semiconductor will drive production of next generation displays

Date:
October 21, 2013
Source:
National Institute for Materials Science
Summary:
For the first time in the world, researchers have found what is needed for a thin film to behave as a semiconductor. The research will reduce power consumption of displays, lead to stable higher-definition TVs and contribute towards conserving precious resources by not using zinc or gallium.

Photograph of a prototype of an oxide transistor and schematic diagram of the device structure.
Credit: Image courtesy of National Institute for Materials Science

For the first time in the world, researchers have found what is needed for a thin film to behave as a semiconductor. The research will reduce power consumption of displays, lead to stable higher-definition TVs and contribute towards conserving precious resources by not using zinc or gallium.

Dr. Shinya Aikawa, a post-doctoral researcher, Dr. Kazuhito Tsukagoshi, Principal Investigator, and Dr. Toshihide Nabatame, General Manager, from the International Center for Materials Nanoarchitectonics (WPI-MANA) (Director-General: Masakazu Aono) of the National Institute for Materials Science (President: Sukekatsu Ushioda) developed a pixel switching semiconductor, which will be the key to driving next-generation displays, by using an oxide film with a new elemental composition.

A flat panel display is an important interface in modern information society, which displays the electronic bit information used in machines in a human-recognizable form. Conventionally, amorphous silicon thin films and polysilicon thin films had been used to make field-effect transistors to be used as pixel switches for TVs and smartphones, but there have been strong calls for the development of high-performance semiconductor films with higher definition or higher speed. At present, indium gallium zinc oxide (IGZO) transistors are potential oxide semiconductors with high field-effect mobility. However, it is generally difficult to adjust the manufacturing conditions for stably and efficiently producing high-performance oxide semiconductors, and this is presenting a major challenge in actual production.

Therefore, materials that can adapt to broader manufacturing conditions are hoped to be developed for thin-film formation.

"We added an infinitesimal amount of metal oxide (titanium oxide, tungsten oxide, silicon oxide, etc.) to indium oxide, and found a factor that decides the film deposition conditions for a thin film to behave as a semiconductor, for the first time in the world," one of the authors said.

When an oxide film contains metal with low bond dissociation energy, the thin film absorbs or desorbs oxygen easily and the conductivity of the film changes. For example, zinc has very low bond dissociation energy, so a thin film using zinc absorbs or desorbs oxygen easily when heated or cooled. This finding suggests that the manufacturing conditions for oxide semiconductors can be controlled by focusing on the bond dissociation energy. "In fact, we confirmed that film deposition conditions can be broadened by adding silicon oxide with high bond dissociation energy to indium oxide. We also confirmed stabilization of thin-film conductivity in post-deposition heat treatment," according to one of the authors.

The research results are expected to be effective not only for reducing the power consumption of displays which consume about half of the power in rapidly diffusing smartphones, but also for achieving higher frequencies to realize higher-definition TVs. Moreover, the thin film developed in this research contributes to conserving precious resources by not using zinc, which is a trace element of concern, or high-cost gallium which is used in large quantities for galvanized steel sheets or as a rubber vulcanizing agent, while it also enables the manufacture of flat panel displays not affected by wild fluctuations in raw material prices.

The research results will be published in the online edition of the U.S. applied physics journal, Applied Physics Letters, in the near future.


Story Source:

The above story is based on materials provided by National Institute for Materials Science. Note: Materials may be edited for content and length.


Cite This Page:

National Institute for Materials Science. "Thin film semiconductor will drive production of next generation displays." ScienceDaily. ScienceDaily, 21 October 2013. <www.sciencedaily.com/releases/2013/10/131021115456.htm>.
National Institute for Materials Science. (2013, October 21). Thin film semiconductor will drive production of next generation displays. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2013/10/131021115456.htm
National Institute for Materials Science. "Thin film semiconductor will drive production of next generation displays." ScienceDaily. www.sciencedaily.com/releases/2013/10/131021115456.htm (accessed September 16, 2014).

Share This



More Matter & Energy News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins