Featured Research

from universities, journals, and other organizations

Atomically thin device promises new class of electronics: Tunable electrical behavior not previously realized in conventional devices

Date:
October 21, 2013
Source:
Northwestern University
Summary:
As electronics approach the atomic scale, researchers are increasingly successful at developing atomically thin, virtually two-dimensional materials that could usher in the next generation of computing. Integrating these materials to create necessary circuits, however, has remained a challenge. Researchers have now taken a significant step toward fabricating complex nanoscale electronics: the creation of a p-n heterojunction diode, a fundamental building block of modern electronics.

As electronics approach the atomic scale, researchers are increasingly successful at developing atomically thin, virtually two-dimensional materials that could usher in the next generation of computing. Integrating these materials to create necessary circuits, however, has remained a challenge.

Northwestern University researchers have now taken a significant step toward fabricating complex nanoscale electronics. By integrating two atomically thin materials -- molybdenum disulfide and carbon nanotubes -- they have created a p-n heterojunction diode, an interface between two types of semiconducting materials.

"The p-n junction diode is among the most ubiquitous components of modern electronics," said Mark Hersam, Bette and Neison Harris Chair in Teaching Excellence in the Department of Materials Science and Engineering at Northwestern's McCormick School of Engineering and Applied Science and director of the Northwestern University Materials Research Center. "By creating this device using atomically thin materials, we not only realize the benefits of conventional diodes but also achieve the ability to electronically tune and customize the device characteristics. We anticipate that this work will enable new types of electronic functionality and could be applied to the growing number of emerging two-dimensional materials."

The isolation over the past decade of atomically thin two-dimensional crystals -- such as graphene, a single-atom-thick carbon lattice -- has prompted researchers to stack two or more distinct two-dimensional materials to create high-performance, ultrathin electronic devices. While significant progress has been made in this direction, one of the most important electronic components -- the p-n junction diode -- has been notably absent.

Among the most widely used electronic structures, the p-n junction diode forms the basis of a number of technologies, including solar cells, light-emitting diodes, photodetectors, computers, and lasers.

In addition to its novel electronic functionality, the p-n heterojunction diode is also highly sensitive to light. This attribute has allowed the authors to fabricate and demonstrate an ultrafast photodetector with an electronically tunable wavelength response.

The research was published October 21 in the Proceedings of the National Academy of Sciences.

In addition to Hersam, leading the research were Lincoln Lauhon, professor of materials science and engineering, and Tobin Marks, Vladimir N. Ipatieff Professor of Catalytic Chemistry and (by courtesy) Materials Science and Engineering.

Other authors of the paper are postdoctoral researchers Vinod Sangwan, Chung-Chiang Wu, and Pradyumna Prabhumirashi, and graduate students Deep Jariwala and Michael Geier, all of whom are affiliated with Northwestern University.

This research was supported by the National Science Foundation-funded Materials Research Science and Engineering Center (MRSEC) and the Office of Naval Research.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Deep Jariwala, Vinod K. Sangwan, Chung-Chiang Wu, Pradyumna L. Prabhumirashi, Michael L. Geier, Tobin J. Marks, Lincoln J. Lauhon and Mark C. Hersam. Gate-tunable carbon nanotube–MoS2 heterojunction p-n diode. PNAS, 2013 DOI: 10.1073/pnas.1317226110

Cite This Page:

Northwestern University. "Atomically thin device promises new class of electronics: Tunable electrical behavior not previously realized in conventional devices." ScienceDaily. ScienceDaily, 21 October 2013. <www.sciencedaily.com/releases/2013/10/131021162653.htm>.
Northwestern University. (2013, October 21). Atomically thin device promises new class of electronics: Tunable electrical behavior not previously realized in conventional devices. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/10/131021162653.htm
Northwestern University. "Atomically thin device promises new class of electronics: Tunable electrical behavior not previously realized in conventional devices." ScienceDaily. www.sciencedaily.com/releases/2013/10/131021162653.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins