Featured Research

from universities, journals, and other organizations

Atomically thin device promises new class of electronics: Tunable electrical behavior not previously realized in conventional devices

Date:
October 21, 2013
Source:
Northwestern University
Summary:
As electronics approach the atomic scale, researchers are increasingly successful at developing atomically thin, virtually two-dimensional materials that could usher in the next generation of computing. Integrating these materials to create necessary circuits, however, has remained a challenge. Researchers have now taken a significant step toward fabricating complex nanoscale electronics: the creation of a p-n heterojunction diode, a fundamental building block of modern electronics.

As electronics approach the atomic scale, researchers are increasingly successful at developing atomically thin, virtually two-dimensional materials that could usher in the next generation of computing. Integrating these materials to create necessary circuits, however, has remained a challenge.

Related Articles


Northwestern University researchers have now taken a significant step toward fabricating complex nanoscale electronics. By integrating two atomically thin materials -- molybdenum disulfide and carbon nanotubes -- they have created a p-n heterojunction diode, an interface between two types of semiconducting materials.

"The p-n junction diode is among the most ubiquitous components of modern electronics," said Mark Hersam, Bette and Neison Harris Chair in Teaching Excellence in the Department of Materials Science and Engineering at Northwestern's McCormick School of Engineering and Applied Science and director of the Northwestern University Materials Research Center. "By creating this device using atomically thin materials, we not only realize the benefits of conventional diodes but also achieve the ability to electronically tune and customize the device characteristics. We anticipate that this work will enable new types of electronic functionality and could be applied to the growing number of emerging two-dimensional materials."

The isolation over the past decade of atomically thin two-dimensional crystals -- such as graphene, a single-atom-thick carbon lattice -- has prompted researchers to stack two or more distinct two-dimensional materials to create high-performance, ultrathin electronic devices. While significant progress has been made in this direction, one of the most important electronic components -- the p-n junction diode -- has been notably absent.

Among the most widely used electronic structures, the p-n junction diode forms the basis of a number of technologies, including solar cells, light-emitting diodes, photodetectors, computers, and lasers.

In addition to its novel electronic functionality, the p-n heterojunction diode is also highly sensitive to light. This attribute has allowed the authors to fabricate and demonstrate an ultrafast photodetector with an electronically tunable wavelength response.

The research was published October 21 in the Proceedings of the National Academy of Sciences.

In addition to Hersam, leading the research were Lincoln Lauhon, professor of materials science and engineering, and Tobin Marks, Vladimir N. Ipatieff Professor of Catalytic Chemistry and (by courtesy) Materials Science and Engineering.

Other authors of the paper are postdoctoral researchers Vinod Sangwan, Chung-Chiang Wu, and Pradyumna Prabhumirashi, and graduate students Deep Jariwala and Michael Geier, all of whom are affiliated with Northwestern University.

This research was supported by the National Science Foundation-funded Materials Research Science and Engineering Center (MRSEC) and the Office of Naval Research.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Deep Jariwala, Vinod K. Sangwan, Chung-Chiang Wu, Pradyumna L. Prabhumirashi, Michael L. Geier, Tobin J. Marks, Lincoln J. Lauhon and Mark C. Hersam. Gate-tunable carbon nanotube–MoS2 heterojunction p-n diode. PNAS, 2013 DOI: 10.1073/pnas.1317226110

Cite This Page:

Northwestern University. "Atomically thin device promises new class of electronics: Tunable electrical behavior not previously realized in conventional devices." ScienceDaily. ScienceDaily, 21 October 2013. <www.sciencedaily.com/releases/2013/10/131021162653.htm>.
Northwestern University. (2013, October 21). Atomically thin device promises new class of electronics: Tunable electrical behavior not previously realized in conventional devices. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2013/10/131021162653.htm
Northwestern University. "Atomically thin device promises new class of electronics: Tunable electrical behavior not previously realized in conventional devices." ScienceDaily. www.sciencedaily.com/releases/2013/10/131021162653.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com
Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins