Featured Research

from universities, journals, and other organizations

Making hydrogen cheaply by imitating bacteria? Unique chemistry in hydrogen catalysts revealed

Date:
October 24, 2013
Source:
University of California - Davis
Summary:
Making hydrogen easily and cheaply is a dream goal for clean, sustainable energy. Bacteria have been doing exactly that for billions of years, and now chemists are revealing how they do it, and perhaps opening ways to imitate them.

This hydrogen-generating cluster of iron (brown) and sulfur (yellow) atoms, with side groups of carbon monoxide (gray/red) and cyanide (gray/blue), could be a key to future fuel sources.
Credit: Protein Data Bank/courtesy graphic

Making hydrogen easily and cheaply is a dream goal for clean, sustainable energy. Bacteria have been doing exactly that for billions of years, and now chemists at the University of California, Davis, and Stanford University are revealing how they do it, and perhaps opening ways to imitate them.

Related Articles


A study published Oct. 25 in the journal Science describes a key step in assembling the hydrogen-generating catalyst.

"It's pretty interesting that bacteria can do this," said David Britt, professor of chemistry at UC Davis and co-author on the paper. "We want to know how nature builds these catalysts -- from a chemist's perspective, these are really strange things."

The bacterial catalysts are based on precisely organized clusters of iron and sulfur atoms, with side groups of cyanide and carbon monoxide. Those molecules are highly toxic unless properly controlled, Britt noted.

The cyanide and carbon monoxide groups were known to come from the amino acid tyrosine, Britt said. Jon Kuchenreuther, a postdoctoral researcher in Britt's laboratory, used a technique called electron paramagnetic resonance to study the structure of the intermediate steps.

They found a series of chemical reactions involving a type of highly reactive enzyme called a radical SAM enzyme. The tyrosine is attached to a cluster of four iron atoms and four sulfur atoms, then cut loose leaving the cyanide and carbon monoxide groups behind.

"People think of radicals as dangerous, but this enzyme directs the radical chemistry, along with the production of normally poisonous CO and CN, along safe and productive pathways," Britt said.

Kuchenreuther, Britt and colleagues also used another technique, Fourier Transform Infrared to study how the iron-cyanide-carbon monoxide complex is formed. That work will be published separately.

"Together, these results show how to make this interesting two-cluster enzyme," Britt said. "This is unique, new chemistry."

Britt's laboratory houses the California Electron Paramagnetic Resonance center (CalEPR), the largest center of its kind on the west coast.

Other authors on the paper are: at UC Davis, postdoctoral researchers William Myers and Troy Stich, project scientist Simon George and graduate student Yaser NejatyJahromy; and at Stanford University, James Swartz, professor of chemical engineering and bioengineering. The work was supported by grants from the U.S. Department of Energy.


Story Source:

The above story is based on materials provided by University of California - Davis. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. M. Kuchenreuther, W. K. Myers, T. A. Stich, S. J. George, Y. NejatyJahromy, J. R. Swartz, R. D. Britt. A Radical Intermediate in Tyrosine Scission to the CO and CN- Ligands of FeFe Hydrogenase. Science, 2013; 342 (6157): 472 DOI: 10.1126/science.1241859

Cite This Page:

University of California - Davis. "Making hydrogen cheaply by imitating bacteria? Unique chemistry in hydrogen catalysts revealed." ScienceDaily. ScienceDaily, 24 October 2013. <www.sciencedaily.com/releases/2013/10/131024143311.htm>.
University of California - Davis. (2013, October 24). Making hydrogen cheaply by imitating bacteria? Unique chemistry in hydrogen catalysts revealed. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2013/10/131024143311.htm
University of California - Davis. "Making hydrogen cheaply by imitating bacteria? Unique chemistry in hydrogen catalysts revealed." ScienceDaily. www.sciencedaily.com/releases/2013/10/131024143311.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com
How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins