Featured Research

from universities, journals, and other organizations

'Diabetic flies' can speed up disease-fighting research

Date:
November 6, 2013
Source:
University of Maryland
Summary:
In a finding that has the potential to significantly speed up diabetes research, scientists have discovered that fruit flies respond to insulin at the cellular level much like humans do, making these common, easily bred insects good subjects for laboratory experiments in new treatments for diabetes.

The fruit fly on the right, genetically altered to disable insulin-like genes and fed a high sugar diet, has symptoms comparable to type 2 diabetes in humans. It is smaller and less able to reproduce than the normal fruit fly on the left, but healthy enough for use in testing diabetes treatments.
Credit: Jingnan Liu and Hua Zhang

In a finding that has the potential to significantly speed up diabetes research, scientists at the University of Maryland have discovered that fruit flies respond to insulin at the cellular level much like humans do, making these common, easily bred insects good subjects for laboratory experiments in new treatments for diabetes.

The common fruit fly Drosophila melanogaster looks like a sesame seed with wings, produces offspring by the thousands, and lives for around a month. These creatures don't resemble humans in any obvious way, but they share more than sixty percent of our genetic code. And scientists like UMD's Leslie Pick and Georgeta Crivat are finding that those similarities control basic biological processes that work alike in both species.

Drosophila melanogaster is easy to breed, raise and study in the laboratory, so it's widely used in research. Pick, chairman of the UMD Entomology Department, conducts experiments that use information about the fruit fly's relatively simple genome to illuminate biological processes in humans. Her recent research focuses on whether fruit flies use the hormone insulin the same way humans and other mammals do.

"We hope to use all the genetic tools we have available for flies, and the fact that we can breed them in huge numbers, very fast, to set up efficient screening tests for assessing new diabetes treatments," Pick said.

In a new study published Nov. 6 in the peer-reviewed online journal PLOS One, Pick and her co-authors found the basic mechanisms that humans use to regulate blood sugar -- the process that goes awry in diabetes -- are indeed shared with flies.

In humans, insulin controls the production and movement of glucose, the form of sugar that fuels mammalian cells. The movement of glucose into individual cells begins when insulin binds to a specialized insulin receptor on a cell. That causes a sugar transporter called GLUT4 to move from the cell interior to its membrane, allowing glucose to flow through the membrane, moving from the bloodstream into the cell. In diabetics, this process fails and sugar accumulates in the blood. In the main types of diabetes -- Type 1, in which the body cannot produce insulin, and Type 2, in which the cells stop responding to insulin -- high blood sugar levels can gravely damage many organs. The disease is one of the world's most serious health problems.

Fruit flies' systems are very different than humans. Glucose is not their main form of sugar, and they don't have blood like mammals do, so researchers were not sure whether insulin played a role in their cells that is similar to humans. But in a 2009 experiment, Pick and colleagues used genetic engineering techniques to disable five insulin-like fruit fly genes.

The resulting "diabetic flies" had many symptoms of diabetes in humans, Pick said. "They were very, very small and sluggish; they had decreased body fat and higher levels of circulating blood sugar; and they did not reproduce very well." Other researchers trying to understand diabetes have performed similar experiments on mammals, which usually did not survive the genetic alteration, Pick said.

"The flies are not fine, but they do live," Pick said. That meant more diabetes-related experiments, using flies instead of mammals, might be possible.

To be sure, the researchers needed to know whether the cellular processes taking place were the same in both species. Pick and her colleagues turned to Samuel Cushman of the National Institutes of Health, the co-discoverer of the glucose transport process involving GLUT4 in humans. Combining their expertise, the two research teams inserted GLUT4 into fruit flies, using a fluorescent tag to mark the GLUT4 molecules.

To the scientists' surprise, although this protein is foreign to the fruit flies, their cells moved GLUT4 to the cell membrane exactly as human cells do in response to insulin. Under a high powered microscope that picks up the fluorescent GLUT4,"You can actually track its movement onto the cell membrane."

"It's pretty amazing," Pick said. "We hoped that would happen, but there are so many differences between flies and mammals that we ourselves were skeptical."

The researchers' next step is to find the sugar transporter that fills the role of GLUT4 in fruit flies, Pick said, and "to use the fly model to see if we can screen for compounds that promote sugar uptake, alone or working together with insulin, to treat diabetes more effectively."


Story Source:

The above story is based on materials provided by University of Maryland. Note: Materials may be edited for content and length.


Journal Reference:

  1. Georgeta Crivat, Vladimir A. Lizunov, Caroline R. Li, Karin G. Stenkula, Joshua Zimmerberg, Samuel W. Cushman, Leslie Pick. Insulin Stimulates Translocation of Human GLUT4 to the Membrane in Fat Bodies of Transgenic Drosophila melanogaster. PLoS ONE, 2013; 8 (11): e77953 DOI: 10.1371/journal.pone.0077953

Cite This Page:

University of Maryland. "'Diabetic flies' can speed up disease-fighting research." ScienceDaily. ScienceDaily, 6 November 2013. <www.sciencedaily.com/releases/2013/11/131106202235.htm>.
University of Maryland. (2013, November 6). 'Diabetic flies' can speed up disease-fighting research. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2013/11/131106202235.htm
University of Maryland. "'Diabetic flies' can speed up disease-fighting research." ScienceDaily. www.sciencedaily.com/releases/2013/11/131106202235.htm (accessed October 21, 2014).

Share This



More Health & Medicine News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Nigeria Beat Its Ebola Outbreak

How Nigeria Beat Its Ebola Outbreak

Newsy (Oct. 20, 2014) The World Health Organization has declared Nigeria free of Ebola. Health experts credit a bit of luck and the government's initial response. Video provided by Newsy
Powered by NewsLook.com
Another Study Suggests Viagra Is Good For The Heart

Another Study Suggests Viagra Is Good For The Heart

Newsy (Oct. 20, 2014) An ingredient in erectile-dysfunction medications such as Viagra could improve heart function. Perhaps not surprising, given Viagra's history. Video provided by Newsy
Powered by NewsLook.com
Ebola Worries End for Dozens on U.S. Watch Lists

Ebola Worries End for Dozens on U.S. Watch Lists

Reuters - US Online Video (Oct. 20, 2014) Forty-three people who had contact with Thomas Eric Duncan, the first person diagnosed with Ebola in the U.S., were cleared overnight of twice-daily monitoring after 21 days of showing no symptoms. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
CDC Calls for New Ebola Safety Guidelines

CDC Calls for New Ebola Safety Guidelines

AP (Oct. 20, 2014) Centers for Disease Control and Prevention Director Dr. Tom Frieden laid out new guidelines for health care workers when dealing with the deadly Ebola virus including new precautions when taking off personal protective equipment. (Oct. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins