Featured Research

from universities, journals, and other organizations

Next-generation semiconductors synthesis

Date:
November 8, 2013
Source:
American Institute of Physics (AIP)
Summary:
Conventional processes for producing AIN layers run at temperatures as high as 1150 degrees Celsius, and offer limited control over the thickness of the layers. Now a new technique offers a way to produce high-quality AlN layers with atomic-scale thickness and at half the temperature of other methods.

Although silicon semiconductors are nearly universal in modern electronics, devices made from silicon have limitations -- including that they cease to function properly at very high temperatures. One promising alternative are semiconductors made from combinations of aluminum, gallium, and indium with nitrogen to form aluminum nitride (AlN), gallium nitride (GaN), and indium nitride (InN), which are stronger and more stable than their silicon counterparts, function at high temperatures, are piezoelectric (that is, generate voltage under mechanical force), and are transparent to, and can emit, visible light.

Related Articles


Conventional processes for producing AIN layers run at temperatures as high as 1150 degrees Celsius, and offer limited control over the thickness of the layers. Now a new technique, described in the AIP Publishing journal Applied Physics Letters, offers a way to produce high-quality AlN layers with atomic-scale thickness and at half the temperature of other methods.

Neeraj Nepal and colleagues of the United States Naval Research Laboratory in Washington, D.C. formed AIN layers using atomic layer epitaxy (ALE), in which materials are "grown," layer-by-layer, by sequentially employing two self-limiting chemical reactions onto a surface.

"For instance to grow aluminum nitride, you would inject a pulse of an aluminum precursor into the growth zone where it would coat all surfaces," explained Nepal. "After purging any excess aluminum precursor away, you would then 'build' the crystal by injecting a pulse of the nitrogen precursors into the growth zone, where it reacts with the aluminum precursor at the surface to form a layer of AlN. Then you'd purge any excess nitrogen and reaction products away and repeat the process."

With this process, the researchers produced a material with qualities similar to those synthesized at much higher temperatures, but under conditions that allow it to be integrated in new ways for the fabrication of devices for technologies such as transistors and switches.

The work, Nepal says, expands the potential for new advanced specialty materials that could be used, for example, in next-generation high-frequency radiofrequency electronics, such as those used for high-speed data transfer and cell phone services.


Story Source:

The above story is based on materials provided by American Institute of Physics (AIP). Note: Materials may be edited for content and length.


Journal Reference:

  1. N. Nepal, S. B. Qadri, J. K. Hite, N. A. Mahadik, M. A. Mastro, C. R. Eddy. Epitaxial growth of AlN films via plasma-assisted atomic layer epitaxy. Applied Physics Letters, 2013; 103 (8): 082110 DOI: 10.1063/1.4818792

Cite This Page:

American Institute of Physics (AIP). "Next-generation semiconductors synthesis." ScienceDaily. ScienceDaily, 8 November 2013. <www.sciencedaily.com/releases/2013/11/131108124656.htm>.
American Institute of Physics (AIP). (2013, November 8). Next-generation semiconductors synthesis. ScienceDaily. Retrieved January 29, 2015 from www.sciencedaily.com/releases/2013/11/131108124656.htm
American Institute of Physics (AIP). "Next-generation semiconductors synthesis." ScienceDaily. www.sciencedaily.com/releases/2013/11/131108124656.htm (accessed January 29, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, January 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

RightThisMinute (Jan. 29, 2015) — If your car has an "Insane Mode" then you know it&apos;s fast. Well, these unsuspecting passengers were in for one insane ride when they hit the button. Tesla cars are awesome. Video provided by RightThisMinute
Powered by NewsLook.com
Now Bill Gates Is 'Concerned' About Artificial Intelligence

Now Bill Gates Is 'Concerned' About Artificial Intelligence

Newsy (Jan. 29, 2015) — Bill Gates joins the list of tech moguls scared of super-intelligent machines. He says more people should be concerned, but why? Video provided by Newsy
Powered by NewsLook.com
Two Stunt Pilots Perform Incredibly Close Flyby

Two Stunt Pilots Perform Incredibly Close Flyby

Rumble (Jan. 29, 2015) — Two pilots from &apos;Escuadrilla Argentina de Acrobacia Aιrea&apos; perform an incredibly low altitude flyby stunt during a recent show exhibition in Argentina. Check it out! Video provided by Rumble
Powered by NewsLook.com
'Brand Blocker' Glasses Blur Ads in Real Time

'Brand Blocker' Glasses Blur Ads in Real Time

Buzz60 (Jan. 28, 2015) — A team of college students design and build a pair of goggles that will obscure any corporate branding from your field of vision. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins