Featured Research

from universities, journals, and other organizations

Molecular interplay explains many immunodeficiencies

Date:
November 11, 2013
Source:
Garvan Institute of Medical Research
Summary:
Scientists have described an exquisitely balanced interplay of four molecules that trigger and govern antibody production in immune cells. As well as being an important basic science discovery, it helps explain why people with mutations in any one of the associated genes cannot fight infection effectively, and develop rare and crippling immunodeficiency disorders.

Australian scientists have described an exquisitely balanced interplay of four molecules that trigger and govern antibody production in immune cells. As well as being an important basic science discovery, it helps explain why people with mutations in any one of the associated genes cannot fight infection effectively, and develop rare and crippling immunodeficiency disorders.

Our immune system is made of a number of different types of cells that undertake specific functions. Those that make antibodies are known as 'B cells', and they become active after infection. Once a B cell is activated, it can proliferate into thousands of clones, known as 'plasma cells', which patrol the body and secrete large amounts of antibody to destroy the invader.

Dr Lucinda Berglund and Associate Professor Stuart Tangye, from Sydney's Garvan Institute of Medical Research, are the first to describe a specific molecular process that controls the activation and differentiation of B cells. They used human blood and tissue samples to show that the chemical messaging molecule interleukin 21 (IL-21) activates the STAT3 gene in B cells, which in turn triggers the expression of a molecule known as 'CD25', a cell surface receptor that attracts a second messaging molecule, interleukin 2 (IL-2). IL-21 and IL-2 then work co-operatively to induce plasma cell development and antibody production. Their findings are published in the international journal Blood, now online.

"The interesting and informative aspect of this finding for me is that some people have mutations in the IL-21 receptor, some have mutations in STAT3, while others have mutations in CD25, and they all have B cell defects," said Associate Professor Tangye.

"By examining B cells from people with specific genetic mutations, we revealed that both components of the IL-21 receptor are critical for B cell function -- and people can have mutations in either, with equally debilitating effects. We see these effects in patients with X-linked severe combined immunodeficiency, whose impaired response to IL-21 causes severe antibody deficiency."

"Patients with mutations in the STAT3 gene develop Hyper IgE Syndrome, another rare immunodeficiency that manifests as compromised antibody production and greatly depleted immune defences.

Immunodeficiencies arising from mutations in single genes give scientists a unique opportunity to understand B cell signaling, and reveal potential targets for modulating B cell responses in immunodeficiency and autoimmunity.

The current study arose from analysing global gene expression in B cells from healthy people and people with STAT3 deficiency -- which immediately highlighted genes that were poorly expressed in disease. The Tangye lab plans to investigate other genes that impact the function of B cells.


Story Source:

The above story is based on materials provided by Garvan Institute of Medical Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. L. J. Berglund, D. T. Avery, C. S. Ma, L. Moens, E. K. Deenick, J. Bustamante, S. Boisson-Dupuis, M. Wong, S. Adelstein, P. D. Arkwright, R. Bacchetta, L. Bezrodnik, H. Dadi, C. Roifman, D. A. Fulcher, J. B. Ziegler, J. M. Smart, M. Kobayashi, C. Picard, A. Durandy, M. C. Cook, J.-L. Casanova, G. Uzel, S. G. Tangye. IL-21 signalling via STAT3 primes human naive B cells to respond to IL-2 to enhance their differentiation into plasmablasts. Blood, 2013; DOI: 10.1182/blood-2013-06-506865

Cite This Page:

Garvan Institute of Medical Research. "Molecular interplay explains many immunodeficiencies." ScienceDaily. ScienceDaily, 11 November 2013. <www.sciencedaily.com/releases/2013/11/131111102514.htm>.
Garvan Institute of Medical Research. (2013, November 11). Molecular interplay explains many immunodeficiencies. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2013/11/131111102514.htm
Garvan Institute of Medical Research. "Molecular interplay explains many immunodeficiencies." ScienceDaily. www.sciencedaily.com/releases/2013/11/131111102514.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins