Featured Research

from universities, journals, and other organizations

An intersection of math and biology: Clams and snails inspire robotic diggers and crawlers

Date:
November 11, 2013
Source:
Society for Industrial and Applied Mathematics
Summary:
Engineering has always taken cues from biology. Natural organisms and systems have done well at evolving to perform tasks and achieve objectives within the limits set by nature and physics. That is one of the reasons engineers are studying snails. Snails can move in any direction -- horizontally, vertically, and upside down -- on various surfaces, be it sand, shells, tree barks or slick walls and smooth glass. One of the reasons for this is the sticky substance on their underbellies, which acts as a powerful lubricant and reduces friction during movement.

Engineering has always taken cues from biology. Natural organisms and systems have done well at evolving to perform tasks and achieve objectives within the limits set by nature and physics.

Related Articles


That is one of the reasons Anette Hosoi, professor of mechanical engineering at the Massachusetts Institute of Technology, studies snails. Snails can move in any direction -- horizontally, vertically, and upside down -- on various surfaces, be it sand, shells, tree barks or slick walls and smooth glass. One of the reasons for this is the sticky substance on their underbellies, which acts as a powerful lubricant and reduces friction during movement.

By studying and adapting the biological properties of the snail to robotic devices, Hosoi's group has been able to create a "RoboSnail," which can climb walls and stick to overhead surfaces much like its living counterpart. Such a device can have potential uses in invasive surgery and oil well drilling, among other applications.

Another organism of interest to Hosoi is the razor clam, which has an amazing ability to dig and wedge itself; it can burrow up to 30 inches in the sand. Hosoi's "RoboClam" has been developed with the intention of understanding the organism's behavior and mechanics as well as to explore the possibility of automated digging devices that use less energy than current technology and equipment .

The researchers found that while digging, the clam's up-and-down movement accompanied by opening and closing of its shell turns sand into the consistency of liquid quicksand. This in turn allows the clam to move quickly through the sand. Similar to the human version, the RoboClam vibrates, changing the solid seabed into fluid, allowing a worm-like foot to push down.

Clam-inspired robotic diggers could find use as automatic tethers and lightweight low-cost anchoring devices for small robotic submarines and even large ships and oil platforms. Devices that burrow into the seabed could also potentially be used as detonators for underwater mines.

Hosoi is not alone in looking to biology to instruct robotics development. Engineers around the world are turning to natural organisms like insects, fish and turtles to inspire the design of robots capable of performing specific tasks that automated devices have traditionally been unable to achieve. Mimicking natural organisms can also aid in improving the efficiency of many applications that are energetically expensive, since biological entities perform the same tasks with much higher efficiency.

It is important to not only copy the animals, but also to understand the biology of their mechanisms in order to take away the key features that allow them to do what they do. These types of biomechanical studies have led to a mutually beneficial partnership between mathematicians and biologists. Biologists can inform mathematical scientists as a goldmine of data is emerging as biology becomes more and more quantified. Mathematicians, in turn, can employ the tools of engineering and computation to analyze this data and offer new insights into the way animals move.


Story Source:

The above story is based on materials provided by Society for Industrial and Applied Mathematics. Note: Materials may be edited for content and length.


Cite This Page:

Society for Industrial and Applied Mathematics. "An intersection of math and biology: Clams and snails inspire robotic diggers and crawlers." ScienceDaily. ScienceDaily, 11 November 2013. <www.sciencedaily.com/releases/2013/11/131111161516.htm>.
Society for Industrial and Applied Mathematics. (2013, November 11). An intersection of math and biology: Clams and snails inspire robotic diggers and crawlers. ScienceDaily. Retrieved March 4, 2015 from www.sciencedaily.com/releases/2013/11/131111161516.htm
Society for Industrial and Applied Mathematics. "An intersection of math and biology: Clams and snails inspire robotic diggers and crawlers." ScienceDaily. www.sciencedaily.com/releases/2013/11/131111161516.htm (accessed March 4, 2015).

Share This


More From ScienceDaily



More Computers & Math News

Wednesday, March 4, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Largest Gathering of Games Developers in San Francisco

Largest Gathering of Games Developers in San Francisco

AFP (Mar. 4, 2015) The 2015 Games Developers Conference, the largest gathering of its kind, brings professionals from all over the world together in San Francisco to reflect on on the art and science of games creation. Duration: 01:13 Video provided by AFP
Powered by NewsLook.com
'FREAK' Attack Courtesy Of Age-Old Government Policies

'FREAK' Attack Courtesy Of Age-Old Government Policies

Newsy (Mar. 4, 2015) "FREAK" attack allows hackers to gain access to your encrypted data. Video provided by Newsy
Powered by NewsLook.com
The Best Apps for March Madness

The Best Apps for March Madness

Buzz60 (Mar. 3, 2015) Before the March Madness tournament tips off, there are a few apps you&apos;ll want on hand. Krystin Goodwin (@krystingoodwin) has a roundup of the best apps to help you set brackets and box out the competition with tech! Video provided by Buzz60
Powered by NewsLook.com
Google Will Enter The Wireless Carrier Market

Google Will Enter The Wireless Carrier Market

Newsy (Mar. 3, 2015) Google senior vice president Sundar Pichai said the company will enter the wireless carrier market to entice carriers to pick up its ideas. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins