Featured Research

from universities, journals, and other organizations

Needle in a haystack: New research shows how brain prepares to start searching

Date:
November 13, 2013
Source:
University of Lincoln
Summary:
Many of us have steeled ourselves for those 'needle in a haystack' tasks of finding our vehicle in an airport car park, or scouring the supermarket shelves for a favorite brand. A new scientific study has revealed that our understanding of how the human brain prepares to perform visual search tasks of varying difficulty may now need to be revised. When people search for a specific object, they tend to hold in mind a visual representation of it, based on key attributes like shape, size or color. Scientists call this 'advanced specification.'

Many of us have steeled ourselves for those 'needle in a haystack' tasks of finding our vehicle in an airport car park, or scouring the supermarket shelves for a favorite brand.

Related Articles


A new scientific study has revealed that our understanding of how the human brain prepares to perform visual search tasks of varying difficulty may now need to be revised.

When people search for a specific object, they tend to hold in mind a visual representation of it, based on key attributes like shape, size or color. Scientists call this 'advanced specification'. For example, we might search for a friend at a busy railway station by scanning the platform for someone who is very tall or who is wearing a green coat, or a combination of these characteristics.

Researchers from the School of Psychology at the University of Lincoln, UK, set out to better explain how these abstract visual representations are formed. They used fMRI scanners to record neural activity when volunteers prepared to search for a target object: a colored letter amid a screen of other colored letters.

Their findings, published in the journal 'Brain Research', are the first to fully isolate the different areas of the human brain involved in this 'prepare to search' function. Surprisingly, they show that the advanced frontal areas of the brain, usually key to advanced cognitive tasks, appear to take a backseat. Instead it is the basic back areas of the brain and the sub-cortical areas that do the work.

Dr Patrick Bourke from the University of Lincoln's School of Psychology, who led the study, said: "Up until now, when researchers have studied visual search tasks they have also found that frontal areas of the brain were active. This has been assumed to indicate a control system: an 'executive' that largely resides in the advanced front of the brain which sends signals to the simpler back of the brain, activating visual memories. Here, when we isolated the 'prepare' part of the task from the actual search and response phase we found that this activation in the front was no longer present."

This finding has important implications for understanding the fundamental brain processes involved. It was previously thought that the Intra-parietal region of the brain, which is linked to visual attention, was the central component of the supposed 'front-back' control network, relaying useful information (such as a shape or color bias) from frontal areas of the brain to the back, where simple visual representations of the object are held. If the frontal areas are not activated in the preparation phase, this cannot be the case.

The study also showed that the pattern of brain activation varied depending on the anticipated difficulty of the search task, even when the target object was the same. This indicates that rather than holding in mind a single representation of an object, a new target is constructed each time, depending on the nature of the task.

Dr Bourke added: "While consistent with previous brain imaging work on visual search, these results change the interpretations and assumptions that have been applied previously. Notably, they highlight a difference between studies of animals' brains and those of humans. Studies with monkeys convincingly show the front-back control system and we thought we understood how this worked. At the same time our findings are consistent with a growing body of brain imaging work in humans that also shows no frontal brain activation when short term memories are held."

The paper 'Functional brain organization of preparatory attentional control in visual search' was published in the journal Brain Research.


Story Source:

The above story is based on materials provided by University of Lincoln. Note: Materials may be edited for content and length.


Journal Reference:

  1. Patrick Bourke, Steven Brown, Elton Ngan, Mario Liotti. Functional brain organization of preparatory attentional control in visual search. Brain Research, 2013; 1530: 32 DOI: 10.1016/j.brainres.2013.07.032

Cite This Page:

University of Lincoln. "Needle in a haystack: New research shows how brain prepares to start searching." ScienceDaily. ScienceDaily, 13 November 2013. <www.sciencedaily.com/releases/2013/11/131113080129.htm>.
University of Lincoln. (2013, November 13). Needle in a haystack: New research shows how brain prepares to start searching. ScienceDaily. Retrieved March 2, 2015 from www.sciencedaily.com/releases/2013/11/131113080129.htm
University of Lincoln. "Needle in a haystack: New research shows how brain prepares to start searching." ScienceDaily. www.sciencedaily.com/releases/2013/11/131113080129.htm (accessed March 2, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Monday, March 2, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

This Nasal Treatment Could Help Ease Migraine Pain

This Nasal Treatment Could Help Ease Migraine Pain

Newsy (Mar. 2, 2015) Researchers gave lidocaine to 112 patients, and about 88 percent of the subjects said they needed less migraine-relief medicine the next day. Video provided by Newsy
Powered by NewsLook.com
How Facebook Use Can Lead To Depression

How Facebook Use Can Lead To Depression

Newsy (Mar. 1, 2015) Margaret Duffy of the University of Missouri talks about her study on the social network and the envy and depression that Facebook use can cause. Video provided by Newsy
Powered by NewsLook.com
The Best Foods to Battle Stress

The Best Foods to Battle Stress

Buzz60 (Feb. 26, 2015) If you&apos;re dealing with anxiety, there are a few foods that can help. Krystin Goodwin (@krystingoodwin) has the best foods to tame stress. Video provided by Buzz60
Powered by NewsLook.com
Sleeping Too Much Or Too Little Might Increase Stroke Risk

Sleeping Too Much Or Too Little Might Increase Stroke Risk

Newsy (Feb. 26, 2015) People who sleep more than eight hours per night are 45 percent more likely to have a stroke, according to a University of Cambridge study. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins