Featured Research

from universities, journals, and other organizations

Needle in a haystack: New research shows how brain prepares to start searching

Date:
November 13, 2013
Source:
University of Lincoln
Summary:
Many of us have steeled ourselves for those 'needle in a haystack' tasks of finding our vehicle in an airport car park, or scouring the supermarket shelves for a favorite brand. A new scientific study has revealed that our understanding of how the human brain prepares to perform visual search tasks of varying difficulty may now need to be revised. When people search for a specific object, they tend to hold in mind a visual representation of it, based on key attributes like shape, size or color. Scientists call this 'advanced specification.'

Many of us have steeled ourselves for those 'needle in a haystack' tasks of finding our vehicle in an airport car park, or scouring the supermarket shelves for a favorite brand.

A new scientific study has revealed that our understanding of how the human brain prepares to perform visual search tasks of varying difficulty may now need to be revised.

When people search for a specific object, they tend to hold in mind a visual representation of it, based on key attributes like shape, size or color. Scientists call this 'advanced specification'. For example, we might search for a friend at a busy railway station by scanning the platform for someone who is very tall or who is wearing a green coat, or a combination of these characteristics.

Researchers from the School of Psychology at the University of Lincoln, UK, set out to better explain how these abstract visual representations are formed. They used fMRI scanners to record neural activity when volunteers prepared to search for a target object: a colored letter amid a screen of other colored letters.

Their findings, published in the journal 'Brain Research', are the first to fully isolate the different areas of the human brain involved in this 'prepare to search' function. Surprisingly, they show that the advanced frontal areas of the brain, usually key to advanced cognitive tasks, appear to take a backseat. Instead it is the basic back areas of the brain and the sub-cortical areas that do the work.

Dr Patrick Bourke from the University of Lincoln's School of Psychology, who led the study, said: "Up until now, when researchers have studied visual search tasks they have also found that frontal areas of the brain were active. This has been assumed to indicate a control system: an 'executive' that largely resides in the advanced front of the brain which sends signals to the simpler back of the brain, activating visual memories. Here, when we isolated the 'prepare' part of the task from the actual search and response phase we found that this activation in the front was no longer present."

This finding has important implications for understanding the fundamental brain processes involved. It was previously thought that the Intra-parietal region of the brain, which is linked to visual attention, was the central component of the supposed 'front-back' control network, relaying useful information (such as a shape or color bias) from frontal areas of the brain to the back, where simple visual representations of the object are held. If the frontal areas are not activated in the preparation phase, this cannot be the case.

The study also showed that the pattern of brain activation varied depending on the anticipated difficulty of the search task, even when the target object was the same. This indicates that rather than holding in mind a single representation of an object, a new target is constructed each time, depending on the nature of the task.

Dr Bourke added: "While consistent with previous brain imaging work on visual search, these results change the interpretations and assumptions that have been applied previously. Notably, they highlight a difference between studies of animals' brains and those of humans. Studies with monkeys convincingly show the front-back control system and we thought we understood how this worked. At the same time our findings are consistent with a growing body of brain imaging work in humans that also shows no frontal brain activation when short term memories are held."

The paper 'Functional brain organization of preparatory attentional control in visual search' was published in the journal Brain Research.


Story Source:

The above story is based on materials provided by University of Lincoln. Note: Materials may be edited for content and length.


Journal Reference:

  1. Patrick Bourke, Steven Brown, Elton Ngan, Mario Liotti. Functional brain organization of preparatory attentional control in visual search. Brain Research, 2013; 1530: 32 DOI: 10.1016/j.brainres.2013.07.032

Cite This Page:

University of Lincoln. "Needle in a haystack: New research shows how brain prepares to start searching." ScienceDaily. ScienceDaily, 13 November 2013. <www.sciencedaily.com/releases/2013/11/131113080129.htm>.
University of Lincoln. (2013, November 13). Needle in a haystack: New research shows how brain prepares to start searching. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2013/11/131113080129.htm
University of Lincoln. "Needle in a haystack: New research shows how brain prepares to start searching." ScienceDaily. www.sciencedaily.com/releases/2013/11/131113080129.htm (accessed August 29, 2014).

Share This




More Mind & Brain News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Treadmill 'trips' May Reduce Falls for Elderly

Treadmill 'trips' May Reduce Falls for Elderly

AP (Aug. 28, 2014) Scientists are tripping the elderly on purpose in a Chicago lab in an effort to better prevent seniors from falling and injuring themselves in real life. (Aug.28) Video provided by AP
Powered by NewsLook.com
Alice in Wonderland Syndrome

Alice in Wonderland Syndrome

Ivanhoe (Aug. 27, 2014) It’s an unusual condition with a colorful name. Kids with “Alice in Wonderland” syndrome see sudden distortions in objects they’re looking at or their own bodies appear to change size, a lot like the main character in the Lewis Carroll story. Video provided by Ivanhoe
Powered by NewsLook.com
Stopping Schizophrenia Before Birth

Stopping Schizophrenia Before Birth

Ivanhoe (Aug. 27, 2014) Scientists have long called choline a “brain booster” essential for human development. Not only does it aid in memory and learning, researchers now believe choline could help prevent mental illness. Video provided by Ivanhoe
Powered by NewsLook.com
Personalized Brain Vaccine for Glioblastoma

Personalized Brain Vaccine for Glioblastoma

Ivanhoe (Aug. 27, 2014) Glioblastoma is the most common and aggressive brain cancer in humans. Now a new treatment using the patient’s own tumor could help slow down its progression and help patients live longer. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins