Featured Research

from universities, journals, and other organizations

Solar cells utilize thermal radiation

Date:
November 13, 2013
Source:
Fraunhofer-Gesellschaft
Summary:
Thermal radiation from the sun is largely lost on most silicon solar cells. Up-converters transform the infrared radiation into usable light, however. Researchers have now for the first time successfully adapted this effect for use in generating power.

Thermal radiation from the sun is largely lost on most silicon solar cells. Up-converters transform the infrared radiation into usable light, however. Researchers have now for the first time successfully adapted this effect for use in generating power.

There is more to solar radiation than meets the eye: sun- burn develops from unseen UV radiation, while we sense infrared radiation as heat on our skin, though invisible to us. Solar cells also 'see' only a portion of solar radiation: ap- proximately 20 percent of the energy contained in the solar spectrum is unavailable to cells made of silicon -- they are unable to utilize a part of the infrared radiation, the short-wavelength IR radiation, for generating power.

Researchers of the Fraunhofer Institute for Solar Energy Systems ISE in Freiburg, together with their colleagues at the University of Bern, Switzerland, and the Heriot-Watt University in Edinburgh, Scotland, have now for the first time made a portion of this radiation usable with the assistance of a practical up-converter. The technology that transforms infra- red into usable light has been known about since the 1960s. However, it has only been investigated in connection with solar cells since 1996. "We have been able to adapt both the solar cells and the up-converter so as to obtain the biggest improvement in efficiency so far," reports Stefan Fischer happily, a scientist at ISE. The potential is big: silicon solar cells theoretically convert about thirty percent of sunlight falling upon them into electrical power. Up-converters could increase this portion to a level of forty percent.

A ladder for light particles

However, how does the up-converter manage to utilize the infrared radiation for the solar cells? As solar radiation falls on the solar cells, they absorb the visible and near-infrared light. The infrared portion is not absorbed, however, it goes right through them. On the back- side, the radiation runs into the up-converter -- essentially a microcrystalline powder made of sodium yttrium fluoride embedded in a polymer. Part of the yttrium has been replaced by the scientists with the element erbium, which is active in the optical range and responsible in the end for the up-conversion.

As the light falls on this up-converter, it excites the erbium ions. That means they are raised to a higher energy state. You can imagine this reaction like climbing up a ladder: an electron in the ion uses the energy of the light particle to climb up the first step of the ladder. A sec- ond light particle enables the electron to climb to the second step, and so on. An ion that has been excited in this manner can "jump down" from the highest step or state. In doing so, it emits light with an energy equal to all of the light particles that have helped the elec- tron to climb on up. The up-converter collects, so to speak, the energy of several of these particles and transfers it to a single one. This has so much energy then that the solar cells "see" it and can utilize it.

Researchers had to adapt the solar cells in order to be able to employ an up-converter such as this. Normally, metal is vapour-deposited on the backside, enabling current to flow out of the solar cells -- so no light can shine through normally. "We equipped the solar cells with metal lattices on the front and rear sides so that IR light can pass through the solar cells. In addition, the light can be used by both faces of the cell -- we call this a bi-facial solar cell," explains Fischer. Scientists have applied specialized anti-reflection coatings to the front and rear sides of the solar cell. These cancel reflections at the surfaces and assure that the cells absorb as much light as possible. "This is the first time we have adapted the anti- reflection coating to the backside of the solar cell as well. That could increase the efficiency of the modules and raise their energy yields. The first companies are already trying to accomplish this by implementing bi-facial solar cells," says Fischer, emphasizing the potential of the approach.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Solar cells utilize thermal radiation." ScienceDaily. ScienceDaily, 13 November 2013. <www.sciencedaily.com/releases/2013/11/131113080133.htm>.
Fraunhofer-Gesellschaft. (2013, November 13). Solar cells utilize thermal radiation. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2013/11/131113080133.htm
Fraunhofer-Gesellschaft. "Solar cells utilize thermal radiation." ScienceDaily. www.sciencedaily.com/releases/2013/11/131113080133.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins