Featured Research

from universities, journals, and other organizations

Nanotechnology researchers prove two-step method for potential pancreatic cancer treatment

Date:
November 13, 2013
Source:
University of California, Los Angeles (UCLA), Health Sciences
Summary:
A new nanotechnology for drug delivery that could greatly improve the treatment of deadly pancreatic cancer has been proven to work in mice.

A new method of microscopic drug delivery that could greatly improve the treatment of deadly pancreatic cancer has been proven to work in mice at UCLA's Jonsson Comprehensive Cancer Center.

The research team led by Drs. Andre Nel, professor of nanomedicine and member of the California Nanosystems Institute (CNSI), and Huan Meng, adjunct assistant professor of nanomedicine, published the results of their study in the journal ACS Nano online ahead of print and featured in the November 2013 print issue.

Pancreatic cancer (pancreatic ductal adenocarcinoma or PDAC) is a deadly disease that is nearly impossible to detect until it is in the advanced stage. Treatment options for it are very limited in number and suffer low success rates. The need for innovative and improved treatment of pancreatic cancer cannot be overstated, as its diagnosis over the years has often remained synonymous with a death sentence.

In the pancreas, PDAC tumors consist of cancer cells that are surrounded by other structural elements called stroma. The stroma can be made of many substances, such as connective tissue and pericytes, which block the access of standard chemotherapy in tumor blood vessels from efficiently reaching the cancer cells. These elements can reduce the effectiveness of the treatment.

The dual-wave nanotherapy method employed by Drs. Nel and Meng in their research uses two different kinds of microscopic particles (nanoparticles) intravenously injected in a rapid sequence into the vein of the tumor-bearing mouse. The first wave of nanoparticles carries a substance that removes the pericytes' vascular gates to access the pancreatic cancer cells and the second wave carries the chemotherapy drug that kills the cancer cells.

Drs. Nel and Meng and their colleagues Dr. Jeffrey Zink, UCLA professor of chemistry and biochemistry and Dr. Jeffrey Brinker, University of New Mexico professor of chemical and nuclear engineering, sought to contain chemotherapy in nanoparticles that could more directly target pancreatic cancer cells, but they needed to find a way for those nanoparticles to get through the sites of vascular obstruction caused by the pericytes, which restricts access to the cancer cells. Through experimentation they discovered they could interfere with a cellular signaling pathway (the communication mechanism between cells) that governs the pericyte attraction to the tumor blood vessels. By making nanoparticles that effectively bind a high load of the signaling pathway inhibitor, they developed a first wave of nanoparticles that separates the pericytes from the endothelial cells (on the blood vessel). This opens the vascular gate for the next wave of nanoparticles, which carry the chemotherapeutic agent to the cancer cells inside the tumor.

To test this two-wave nanotherapy, the researchers used immuno-compromised mice that were used to grow human pancreatic tumors (called xenografts) under the mouse skin. With the two-wave method, the xenograft tumors had a significantly higher rate of shrinkage compared to those exposed to chemotherapy given the standard way as a free drug or carried in nanoparticles without first wave treatment.

"This two-wave nanotherapy is an existing example of how we seek to improve the delivery of chemotherapy drugs to their intended targets using nanotechnology to provide an engineered approach," said Nel, chief of the division of nanomedicine. "It shows how the physical and chemical principles of nanotechnology can be integrated with the biological sciences to help cancer patients by increasing the effectiveness of chemotherapy while also reducing side effects and toxicity. This two-wave treatment approach can also address biological impediments in nanotherapies for other types of cancer."


Story Source:

The above story is based on materials provided by University of California, Los Angeles (UCLA), Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Huan Meng, Yang Zhao, Juyao Dong, Min Xue, Yu-Shen Lin, Zhaoxia Ji, Wilson X. Mai, Haiyuan Zhang, Chong Hyun Chang, C. Jeffrey Brinker, Jeffrey I. Zink, Andre E. Nel. Two-Wave Nanotherapy To Target the Stroma and Optimize Gemcitabine Delivery To a Human Pancreatic Cancer Model in Mice. ACS Nano, 2013; 131030141302004 DOI: 10.1021/nn404083m

Cite This Page:

University of California, Los Angeles (UCLA), Health Sciences. "Nanotechnology researchers prove two-step method for potential pancreatic cancer treatment." ScienceDaily. ScienceDaily, 13 November 2013. <www.sciencedaily.com/releases/2013/11/131113092126.htm>.
University of California, Los Angeles (UCLA), Health Sciences. (2013, November 13). Nanotechnology researchers prove two-step method for potential pancreatic cancer treatment. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2013/11/131113092126.htm
University of California, Los Angeles (UCLA), Health Sciences. "Nanotechnology researchers prove two-step method for potential pancreatic cancer treatment." ScienceDaily. www.sciencedaily.com/releases/2013/11/131113092126.htm (accessed July 29, 2014).

Share This




More Health & Medicine News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins