Featured Research

from universities, journals, and other organizations

New generation of micro sensors for monitoring ocean acidification

Date:
November 13, 2013
Source:
National Oceanography Centre, Southampton (UK)
Summary:
The first step in developing a cost-effective micro sensor for long-term monitoring of ocean acidification has been achieved by a team of scientists and engineers.

The image shows the microfluidic chip used in the pH micro sensor. Dimensions: 13 x 8 cm. Credit: National Oceanography Centre.
Credit: National Oceanography Centre

The first step in developing a cost-effective micro sensor for long-term monitoring of ocean acidification has been achieved by a team of scientists and engineers.

Related Articles


The new technology, that will measure pH levels in seawater, was developed by engineers from the National Oceanography Centre, in close collaboration with oceanographers from University of Southampton Ocean and Earth Science, which is based at the centre.

The team successfully tested the new device aboard the old RRS Discovery, and presented their results recently in the scientific journal Anaytica Chimica Acta. In its current form it can be used for on-board analysis of seawater samples, but the ultimate aim is to further develop the design so that it can be deployed for long periods of time in the ocean, taking in situ measurements.

Ocean acidification is occurring as a consequence of rising levels of atmospheric carbon dioxide (CO2), which is absorbed by the oceans. When it dissolves in seawater, CO2 forms a mild acid, which is decreasing ocean pH globally and could impact marine ecosystems. "We need to monitor seawater pH to a high level of precision and accuracy, and over long periods of time, in order to detect changes in the carbon system," says Dr Victoire R้rolle, lead author and researcher with NOC's Sensors group.

As well as monitoring global change, the sensors can be used to measure more localised human impact. The micro sensors could be deployed to detect leakages from carbon capture and storage sites -- whereby CO2 is artificially removed from the atmosphere and stored in subsea reservoirs -- by measuring any proximal fluctuations in pH. The oil industry is also interested in this technology for monitoring seawater acidity around drilling sites.

The sensor works on the same principles as litmus paper that many people may have used in chemistry lessons at school, whereby the colour changes depending on the acidity of the solution.

"The microfluidic chip within the sensor has great advantages because it is robust, small, reasonably cheap to produce, and uses small amounts of reagents -- which is really key for in situ deployment where it may be collecting data out at sea for long periods of time.

"The sensor uses a dye which changes colour with pH. The dye is added to the sample, then the colour is measured using an LED light source and a device called a 'spectrometer'. The microfluidic element simply describes the component needed to mix the seawater sample with the dye and the cell to measure the colour."

The next stage is to develop an in situ system that can be deployed on ocean observing platforms, as has been done with other sensors measuring different chemical properties of seawater. "Now that we know that the bench top system works, we can use the technology from other systems to create in situ pH micro sensors," says Dr R้rolle. "This is what we are working on now, in collaboration with oceanographers based at NOC.

"By working with both engineers and scientists, you benefit from the insights of the developers and the end-user, resulting in a fit-for-purpose end product built to high specification."


Story Source:

The above story is based on materials provided by National Oceanography Centre, Southampton (UK). Note: Materials may be edited for content and length.


Journal Reference:

  1. Victoire M.C. R้rolle, Cedric F.A. Floquet, Andy J.K. Harris, Matt C. Mowlem, Richard R.G.J. Bellerby, Eric P. Achterberg. Development of a colorimetric microfluidic pH sensor for autonomous seawater measurements. Analytica Chimica Acta, 2013; 786: 124 DOI: 10.1016/j.aca.2013.05.008

Cite This Page:

National Oceanography Centre, Southampton (UK). "New generation of micro sensors for monitoring ocean acidification." ScienceDaily. ScienceDaily, 13 November 2013. <www.sciencedaily.com/releases/2013/11/131113105707.htm>.
National Oceanography Centre, Southampton (UK). (2013, November 13). New generation of micro sensors for monitoring ocean acidification. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2013/11/131113105707.htm
National Oceanography Centre, Southampton (UK). "New generation of micro sensors for monitoring ocean acidification." ScienceDaily. www.sciencedaily.com/releases/2013/11/131113105707.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) — A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) — The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com
How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) — Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins