Featured Research

from universities, journals, and other organizations

Molecule critical to healing wounds identified

Date:
November 15, 2013
Source:
University of Pennsylvania
Summary:
Skin provides a first line of defense against viruses, bacteria and parasites that might otherwise make people ill. When an injury breaks that barrier, a systematic chain of molecular signaling launches to close the wound and re-establish the skin's layer of protection. A study now shows that the molecule FOX01 is critical to the wound-healing process.

Numbers of migrating cells, shown in red, are greatly reduced when the molecule FOX01 is deleted (right column).
Credit: University of Pennsylvania

Skin provides a first line of defense against viruses, bacteria and parasites that might otherwise make people ill. When an injury breaks that barrier, a systematic chain of molecular signaling launches to close the wound and re-establish the skin's layer of protection.

A study led by researchers from the University of Pennsylvania's School of Dental Medicine and published in the Journal of Cell Biology now offers a clearer explanation of the role of one of the players in the wound-healing process, a molecule called FOX01. Contrary to what had been expected, FOX01 is critical to wound healing, providing researchers with a possible new target for drugs that could help speed that process for people with impaired wound healing.

Senior author Dana Graves is a professor in Penn Dental Medicine's Department of Periodontics and is vice dean for scholarship and research. He collaborated on the study with Penn's Bhaskar Ponugoti, Fanxing Xu, Chenying Zhang, Chen Tian and Sandra Pacio.

A critical element of wound healing involves the movement of keratinocytes, the primary cells comprising the epidermis, or the outer layer of skin. Previous research had found that FOX01 was expressed at higher levels in wounds, but scientists did not understand what role the molecule was playing. In other scenarios, such as in cancer cells, FOX01 promotes cell death and interferes with the cell reproduction, two actions that would seem to be detrimental to healing.

To investigate the role of FOX01 in wound healing, Graves and colleagues bred mice that lacked the protein in their keratinocytes and then observed the wound healing process in these mice compared to mice with normal FOX01.

"We thought that deleting FOX01 would speed up the wound-healing process," Graves said, "but in fact it had the opposite effect."

The mice that lacked FOX01 showed significant delays in healing. Whereas all wounds on control mice were healed after one week, all of the experimental mice still had open wounds.

Digging deeper into this counterintuitive finding, the researchers examined the effect of reducing FOX01 levels on other genes known to play a role in cell migration. They found that many of these genes were significantly reduced, notably TGF-β1, a critical growth factor in wound repair. When the team added TGF-β1 to cells lacking FOX01, the cells behaved normally and produced the proper suite of molecules needed for healing, indicating that FOX01 acts upstream of TGF-β1 in the signaling pathway triggered during the healing process.

Further experimenting revealed that mice lacking FOX01 had evidence of increased oxidative stress, which is detrimental to wound healing.

"The wound healing environment is a stressful environment for the cell," Graves said. "It appears that upregulation of FOX01 helps protect the cell against oxidative stress."

The fact that FOX01 behaves in this unexpected way could have to do with the specialized microenvironment of a cell in a wound, Graves noted. While FOX01 does indeed promote cell death when it is highly activated, it does the opposite when moderately activated. Which activity it promotes depends on the environment in which it is acting.

Taken together, the study's findings demonstrate that FOX01 plays an integral role in two key processes in wound healing: activation of TGF-β1 and protecting the cell against oxidative damage. Its involvement in these aspects of healing make it a potential target for pharmaceuticals that could help speed healing.

"If you had a small molecule that increased FOX01 expression, you might be able to upregulate TGF-β1 as well as protect against the oxidative stress associated with wound healing," Graves said.


Story Source:

The above story is based on materials provided by University of Pennsylvania. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. Ponugoti, F. Xu, C. Zhang, C. Tian, S. Pacios, D. T. Graves. FOXO1 promotes wound healing through the up-regulation of TGF-1 and prevention of oxidative stress. The Journal of Cell Biology, 2013; 203 (2): 327 DOI: 10.1083/jcb.201305074

Cite This Page:

University of Pennsylvania. "Molecule critical to healing wounds identified." ScienceDaily. ScienceDaily, 15 November 2013. <www.sciencedaily.com/releases/2013/11/131115130304.htm>.
University of Pennsylvania. (2013, November 15). Molecule critical to healing wounds identified. ScienceDaily. Retrieved April 21, 2014 from www.sciencedaily.com/releases/2013/11/131115130304.htm
University of Pennsylvania. "Molecule critical to healing wounds identified." ScienceDaily. www.sciencedaily.com/releases/2013/11/131115130304.htm (accessed April 21, 2014).

Share This



More Health & Medicine News

Monday, April 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nine-Month-Old Baby Can't Open His Mouth

Nine-Month-Old Baby Can't Open His Mouth

Newsy (Apr. 19, 2014) Nine-month-old Wyatt Scott was born with a rare disorder called congenital trismus, which prevents him from opening his mouth. Video provided by Newsy
Powered by NewsLook.com
'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins