Featured Research

from universities, journals, and other organizations

Oxygen, phosphorus and early life on Earth

Date:
November 17, 2013
Source:
Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences
Summary:
Two billion years ago the Earth system was recovering from perhaps the single-most profound modification of its surface environments: the oxygenation of the atmosphere and oceans. This led to a series of major changes in global biogeochemical cycles.

Studies on the unique organic-rich Zaonega rock formation preserved in Carelia, NW Russia, with an age of around two billion years has revealed an astonishing result: "The formation of Earth's earliest phosphorites was influenced strongly, if not controlled completely, by the activity of sulfur bacteria", says co-author Richard Wirth of the GFZ German Research Centre for Geosciences, who analyzed the rock samples with an electron microscope.
Credit: Image courtesy of Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences

Two billion years ago Earth system was recovering from perhaps the single-most profound modification of its surface environments: the oxygenation of the atmosphere and oceans. This led to a series of major changes in global biogeochemical cycles, as a team around Aivo Lepland of the Norwegian Geological Survey NGU reports in the latest online edition of Nature Geoscience.

This also resulted in the distribution of one of life's key elements, phosphorus. Studies on the unique organic-rich Zaonega rock formation preserved in Carelia, NW Russia, with an age of around two billion years has revealed an astonishing result: "  The formation of Earth's earliest phosphorites was influenced strongly, if not controlled completely, by the activity of sulfur bacteria," says co-author Richard Wirth of the GFZ German Research Centre for Geosciences, who analyzed the rock samples with an electron microscope.

"This activity occurred in an oil field setting that had been influenced by active volcanism and associated venting and seeping." In the modern world, sulfur bacteria inhabit upwelling vent and seep areas known as "Black Smokers" and mediate phosphorite formation.

The authors therefore conclude that the formation of the earliest worldwide phosphorites 2 billion years ago can be linked to the establishment of sulfur bacteria habitats, triggered by the oxygenation of Earth.


Story Source:

The above story is based on materials provided by Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Aivo Lepland, Lauri Joosu, Kalle Kirsimäe, Anthony R. Prave, Alexander E. Romashkin, Alenka E. Črne, Adam P. Martin, Anthony E. Fallick, Peeter Somelar, Kärt Üpraus, Kaarel Mänd, Nick M. W. Roberts, Mark A. van Zuilen, Richard Wirth, Anja Schreiber. Potential influence of sulphur bacteria on Palaeoproterozoic phosphogenesis. Nature Geoscience, 2013; DOI: 10.1038/ngeo2005

Cite This Page:

Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences. "Oxygen, phosphorus and early life on Earth." ScienceDaily. ScienceDaily, 17 November 2013. <www.sciencedaily.com/releases/2013/11/131117155502.htm>.
Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences. (2013, November 17). Oxygen, phosphorus and early life on Earth. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2013/11/131117155502.htm
Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences. "Oxygen, phosphorus and early life on Earth." ScienceDaily. www.sciencedaily.com/releases/2013/11/131117155502.htm (accessed August 28, 2014).

Share This




More Fossils & Ruins News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Minds Blown: Scientists Develop Fish That Walk On Land

Minds Blown: Scientists Develop Fish That Walk On Land

Newsy (Aug. 28, 2014) — Canadian scientists looking into the very first land animals took a fish out of water and forced it to walk. Video provided by Newsy
Powered by NewsLook.com
40,000-Year-Old Mammoth Skeleton Found On Texas Farm

40,000-Year-Old Mammoth Skeleton Found On Texas Farm

Newsy (Aug. 26, 2014) — A mammoth skeleton was discovered in a gravel pit on Wayne McEwen's Texas farm back in May. It's now being donated to a museum. Video provided by Newsy
Powered by NewsLook.com
Pawn Shop Buys Lincoln Signature For $50, Worth $50,000

Pawn Shop Buys Lincoln Signature For $50, Worth $50,000

Newsy (Aug. 25, 2014) — The signature is one of a couple Lincoln autographs that have popped up recently. Video provided by Newsy
Powered by NewsLook.com
Neanderthals Probably Died Out Earlier Than We Thought

Neanderthals Probably Died Out Earlier Than We Thought

Newsy (Aug. 21, 2014) — A new study is packed with interesting Neanderthal-related findings, including a "definitive answer" to when they went extinct. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins