Featured Research

from universities, journals, and other organizations

Specially designed nanostructured materials can increase the light-absorbing efficiency of solar cells

Date:
November 20, 2013
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
The Sun is our most promising source of clean and renewable energy. The energy that reaches Earth from the Sun in an hour is almost equivalent to that consumed by humans over a year. Solar cells can tap this massive source of energy by converting light into an electrical current. However, these devices still require significant improvements in efficiency before they can compete with more traditional energy sources. New research has increased the light-absorbing efficiency of solar cells.

Nanoparticles (green) convert near-infrared radiation (NIR) to visible light (VIS), which can be absorbed by quantum dots (red). This creates electrons (e-) which are injected into the titanium oxide (blue) scaffold.
Credit: Copyright : 2013 A*STAR Institute of Materials Research and Engineering

The Sun is our most promising source of clean and renewable energy. The energy that reaches Earth from the Sun in an hour is almost equivalent to that consumed by humans over a year. Solar cells can tap this massive source of energy by converting light into an electrical current. However, these devices still require significant improvements in efficiency before they can compete with more traditional energy sources.

Xiaogang Liu, Alfred Ling Yoong Tok and their co-workers at the A*STAR Institute of Materials Research and Engineering, the National University of Singapore and Nanyang Technological University, Singapore, have now developed a method for using nanostructures to increase the fraction of incoming light that is absorbed by a light-harvesting material1. The method is ideal for use with high-efficiency solar cells.

Solar cells absorb packets of optical energy called photons and then use the photons to generate electrons. The energy of some photons from the Sun, however, is too small to create electrons in this way and so is lost. Liu, Tok and their co-workers circumvented this loss using an effect known as upconversion. In this process, two low-energy photons are combined to produce a single high-energy photon. This energetic photon can then be absorbed by the active region of the solar cell.

The researchers' device comprised a titanium oxide frame filled with a regular arrangement of air pores roughly half a micrometer across -- a structure called an inverse opal (see image). Spheres of the upconversion material, which were 30 nanometers in diameter, sat on the surface of these pores. Tiny light-sensitive quantum dots made of crystals of cadmium selenide coated these nanospheres.

The quantum dots efficiently absorbed incoming light, either directly from an external source or from unconverted photons from the nanospheres, and converted it to electrons. This charge then flowed into the titanium oxide frame. "The titanium oxide inverse opal creates a continuous electron-conducting pathway and provides a large interfacial surface area to support the upconversion nanoparticles and the quantum dots," explains Liu.

Liu, Tok and the team tested the device by firing laser light at it with a wavelength of 980 nanometers, which is not normally absorbed by cadmium selenide quantum dots. As expected, they were able to measure a much higher electrical current than the same experiment performed with a device without the upconversion nanospheres. "We believe that the enhanced energy transfer and light harvesting may afford a highly competitive advantage over conventional silicon solar cells," says Liu.


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Liap Tat Su, Siva Krishna Karuturi, Jingshan Luo, Lijun Liu, Xinfeng Liu, Jun Guo, Tze Chien Sum, Renren Deng, Hong Jin Fan, Xiaogang Liu, Alfred Iing Yoong Tok. Photon Upconversion in Hetero-nanostructured Photoanodes for Enhanced Near-Infrared Light Harvesting. Advanced Materials, 2013; 25 (11): 1603 DOI: 10.1002/adma.201204353

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Specially designed nanostructured materials can increase the light-absorbing efficiency of solar cells." ScienceDaily. ScienceDaily, 20 November 2013. <www.sciencedaily.com/releases/2013/11/131120103444.htm>.
The Agency for Science, Technology and Research (A*STAR). (2013, November 20). Specially designed nanostructured materials can increase the light-absorbing efficiency of solar cells. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2013/11/131120103444.htm
The Agency for Science, Technology and Research (A*STAR). "Specially designed nanostructured materials can increase the light-absorbing efficiency of solar cells." ScienceDaily. www.sciencedaily.com/releases/2013/11/131120103444.htm (accessed August 20, 2014).

Share This




More Earth & Climate News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Unsustainable Elephant Poaching Killed 100K In 3 Years

Unsustainable Elephant Poaching Killed 100K In 3 Years

Newsy (Aug. 20, 2014) Poachers have killed 100,000 elephants between 2010 and 2012, as the booming ivory trade takes its toll on the animals in Africa. Video provided by Newsy
Powered by NewsLook.com
Charter Schools Alter Post-Katrina Landscape

Charter Schools Alter Post-Katrina Landscape

AP (Aug. 20, 2014) Nine years after Hurricane Katrina, charter schools are the new reality of public education in New Orleans. The state of Louisiana took over most of the city's public schools after the killer storm in 2005. (Aug. 20) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com
Disquieting Times for Malaysia's 'fish Listeners'

Disquieting Times for Malaysia's 'fish Listeners'

AFP (Aug. 19, 2014) Malaysia's last "fish listeners" -- practitioners of a dying local art of listening underwater to locate their quarry -- try to keep the ancient technique alive in the face of industrial trawling and the depletion of stocks. Duration: 02:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins