Featured Research

from universities, journals, and other organizations

New immunotherapy for malignant brain tumors

Date:
November 25, 2013
Source:
University of Zurich
Summary:
Glioblastoma is one of the most ominous brain tumors. Despite aggressive surgery, radiation and chemotherapy the outcome of this disease is almost always fatal. A research team has now achieved success with a novel form of treatment that involves encouraging the body’s own immune system to recognize and eliminate cancer cells in the brain.

Glioblastoma is one of the most ominous brain tumors. Despite aggressive surgery, radiation and chemotherapy the outcome of this disease is almost always fatal. A UZH research team has now achieved success with a novel form of treatment that involves encouraging the body's own immune system to recognize and eliminate cancer cells in the brain.

Related Articles


Animal experiments show that it is relatively easy to treat cancer in the early stages. However, it is far more difficult to successfully treat advanced cancer. Treatment of brain tumors is particularly challenging because regulatory T-cells accumulate in brain tumors and suppress an immune attack.

In several steps using a new strategy and a novel drug, Burkhard Becher's team from the Institute of Experimental Immunology at the University of Zurich has now succeeded in doing exactly this in the case of glioblastoma, one of the most dangerous brain tumors. First step, they stimulated the body's own immune system in such a way that it recognized and then killed the brain tumor cells even in advanced stages of the disease.

The initial objective of their new study was to break through the tumor's protective shield. "We wanted to establish whether we can actually elicit an immune response to a tumor growing within the brain," explains Burkhard Becher. To this end, the team used the immune messenger substance, Interleukin-12. When Interleukin-12 is produced in the tumor, immune cells are stimulated locally in such a manner that the tumor is attacked and rejected. Once this procedure had worked well in the early stages of the tumor, the researchers waited in the next stage until the tumor was very large and the life expectancy of the untreated test animals was less than three weeks. "We only began treatment when it was, in fact, already too late," says the first author of the study Johannes vom Berg. The success rate was low, Berg adds. "We then injected biopharmaceutical Interleukin-12 into the large brain tumor. This did induce an immune response but only led to tumor rejection in one-quarter of the animals."

From 25 to 80 percent: combined treatment leads to success

The researchers were successful when they drew on a new development in skin cancer treatment. They combined intra-tumoral Interleukin-12 treatment with the intravenous administration of a novel immunostimulating drug that suppresses the regulatory T-cells. The rejection of the tumor then worked in 80 percent of the test animals. "I have rarely seen such convincing data in preclinical glioma treatment," says Michael Weller, neurooncologist and Director of the Clinic for Neurology at the University Hospital Zurich. He added, "That's why this development should be tested as soon as possible in clinical trials."

In a joint trial, the team then tested the treatment in a further tumor model which mimics the clinical situation of the brain tumor patient even better. And once again they were successful.

The next step: a clinical trial as soon as possible

The findings of the current research work have been published in the Journal of Experimental Medicine. Their promising results do not mean that the treatment can already be as effective in brain tumor patients. This has to be examined in the next phase for which the team now actively seek commercial partners. Burkhard Becher puts it like this, "We are cautiously optimistic but it's time that we adopted completely new strategies to really get to grips with this fatal tumor."


Story Source:

The above story is based on materials provided by University of Zurich. Note: Materials may be edited for content and length.


Journal Reference:

  1. Johannes vom Berg, Melissa Vrohlings, Sergio Haller, Aladin Haimovici, Paulina Kulig, Anna Sledzinska, Michael Weller, and Burkhard Becher. Intratumoral IL-12 combined with CTLA-4 blockade elicits T cell mediated glioma rejection. The Journal of Experimental Medicine, November 2013

Cite This Page:

University of Zurich. "New immunotherapy for malignant brain tumors." ScienceDaily. ScienceDaily, 25 November 2013. <www.sciencedaily.com/releases/2013/11/131125091525.htm>.
University of Zurich. (2013, November 25). New immunotherapy for malignant brain tumors. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2013/11/131125091525.htm
University of Zurich. "New immunotherapy for malignant brain tumors." ScienceDaily. www.sciencedaily.com/releases/2013/11/131125091525.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins