Featured Research

from universities, journals, and other organizations

Tuberculosis: Nature has double-duty antibiotic up her sleeve

Date:
December 3, 2013
Source:
Ecole Polytechnique Fédérale de Lausanne
Summary:
Technology has made it possible to synthesize increasingly targeted drugs. But scientists still have much to learn from Mother Nature. Pyridomycin, a substance produced by non-pathogenic soil bacteria, has been found to be a potent antibiotic against a related strain of bacteria that cause tuberculosis. Its complex three-dimensional structure allows it to act simultaneously on two parts of a key enzyme in the tuberculosis bacillus, and in doing so, dramatically reduce the risk that the bacteria will develop multiple resistances.

Technology has made it possible to synthesize increasingly targeted drugs. But scientists still have much to learn from Mother Nature. Pyridomycin, a substance produced by non- pathogenic soil bacteria, has been found to be a potent antibiotic against a related strain of bacteria that cause tuberculosis. The EPFL scientists who discovered this unexpected property now have a better understanding of how the molecule functions. Its complex three- dimensional structure allows it to act simultaneously on two parts of a key enzyme in the tuberculosis bacillus, and in doing so, dramatically reduce the risk that the bacteria will develop multiple resistances. The researchers, along with their colleagues at ETH Zurich, have published their results in the journal Nature Chemical Biology.

Related Articles


Stewart Cole, director of EPFL's Global Health Institute, led a team that discovered the anti- tuberculosis effect of pyridomycin in 2012. By inhibiting the action of the "InhA" enzyme, pyridomycin literally caused the thick lipid membrane of the bacterium to burst. Now the scientists understand how the molecule does this job.

Dual anti-mutation ability

The tuberculosis bacillus needs the InhA enzyme along with what scientists refer to as a "co- factor," which activates the enzyme, in order to manufacture its membrane. The scientists discovered that pyridomycin binds with the co-factor, neutralizing it.

But pyridomycin doesn't stop there. It also blocks another element needed for making the membrane, the InhA binding site. "Researchers in the pharmaceutical industry have been looking for this weakness in the TB bacillus for decades," explains Ruben Hartkoorn, first author on the article.

By binding simultaneously onto these two elements and neutralizing them, pyridomycin prevents the bacterium from generating its membrane, and it ends up bursting like a balloon. Better still, this dual action drastically reduces the risk that the bacteria will become resistant, because in order to develop resistance, two different specific mutations must exist at the same time. This is increasingly important because cases of multi-resistant TB are on the rise.

Nature's twisting paths -- a lesson in efficiency

"It's a powerful lesson from nature with respect to drug design," explains Cole, co-author and EPFL professor. "The three-dimensional structures of naturally occurring molecules are often more complex, more twisted, than synthetic molecules, and that's precisely what allows pyridomycin to bind onto these two sites simultaneously."

In fact, it binds so effectively that the molecule is not yet ready to be used therapeutically: it doesn't last long enough in the patient's body. This is the point at which bioengineering needs to take over from Mother Nature -- to develop a more robust version of the molecule. This is what the ETH team led by Karl-Heinz Altmann is working on. "Eventually we could multiply the molecule's binding sites, so that it could inhibit critical functions of other pathogenic bacteria," says Cole.


Story Source:

The above story is based on materials provided by Ecole Polytechnique Fédérale de Lausanne. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ruben C Hartkoorn, Florence Pojer, Jon A Read, Helen Gingell, João Neres, Oliver P Horlacher, Karl-Heinz Altmann, Stewart T Cole. Pyridomycin bridges the NADH- and substrate-binding pockets of the enoyl reductase InhA. Nature Chemical Biology, 2013; DOI: 10.1038/nchembio.1405

Cite This Page:

Ecole Polytechnique Fédérale de Lausanne. "Tuberculosis: Nature has double-duty antibiotic up her sleeve." ScienceDaily. ScienceDaily, 3 December 2013. <www.sciencedaily.com/releases/2013/12/131203110320.htm>.
Ecole Polytechnique Fédérale de Lausanne. (2013, December 3). Tuberculosis: Nature has double-duty antibiotic up her sleeve. ScienceDaily. Retrieved March 5, 2015 from www.sciencedaily.com/releases/2013/12/131203110320.htm
Ecole Polytechnique Fédérale de Lausanne. "Tuberculosis: Nature has double-duty antibiotic up her sleeve." ScienceDaily. www.sciencedaily.com/releases/2013/12/131203110320.htm (accessed March 5, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, March 5, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bupa Eyes India Healthcare Opportunities

Bupa Eyes India Healthcare Opportunities

Reuters - Business Video Online (Mar. 5, 2015) — Bupa is hoping to expand in India&apos;s fast-growing health insurance market, once a rule change on foreign investment is implemented. The British private healthcare group&apos;s CEO tells Grace Pascoe why it&apos;s so keen on the new opportunity. Video provided by Reuters
Powered by NewsLook.com
Doctor in Your Pocket Is Getting Smarter

Doctor in Your Pocket Is Getting Smarter

Reuters - Business Video Online (Mar. 5, 2015) — Mobile apps are turning smartphones into a personal doctors, with users able to measure heart rate, blood pressure and even blood sugar. But will it change our behaviour? Ivor Bennett reports from the Mobile World Congress in Barcelona. Video provided by Reuters
Powered by NewsLook.com
AbbVie Inks $21B Deal To Buy Cancer Drugmaker Pharmacyclics

AbbVie Inks $21B Deal To Buy Cancer Drugmaker Pharmacyclics

Newsy (Mar. 5, 2015) — AbbVie announced Wednesday it will buy cancer drugmaker Pharmacyclics in a $21 billion deal. Video provided by Newsy
Powered by NewsLook.com
Adults Only Get The Flu Twice A Decade, Researchers Say

Adults Only Get The Flu Twice A Decade, Researchers Say

Newsy (Mar. 4, 2015) — Researchers found adults only get the flu about once every five years. Scientists analyzed how a person&apos;s immunity builds up over time as well. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins