Featured Research

from universities, journals, and other organizations

Nanoscale shape-memory oxide discovered: Opens door to applications in medicine, energy and electronics

Date:
December 3, 2013
Source:
DOE/Lawrence Berkeley National Laboratory
Summary:
Researchers have discovered a way to introduce a shape memory effect in bismuth ferrite that is larger than any observed in a metal. This discovery opens the door to applications in a wide range of fields, including medical, energy and electronics.

This AFM image shows a recoverable phase transformation in a bismuth ferrite film introduced by an applied electric field. The dashed blue line shows the relocation of the phase boundaries.
Credit: Image courtesy of DOE/Lawrence Berkeley National Laboratory

Listen up nickel-titanium and all you other shape-memory alloys, there's a new kid on the block that just claimed the championship for elasticity and is primed to take over the shape memory apps market at the nanoscale. A research team at Berkeley Lab has discovered a way to introduce a recoverable strain into bismuth ferrite of up to 14-percent on the nanoscale, larger than any shape-memory effect observed in a metal. This discovery opens the door to applications in a wide range of fields, including medical, energy and electronics.

"Our bismuth ferrite not only displayed the champion shape-memory value, it was also far more stable when reduced to nanometer size than shape-memory alloys," says Jinxing Zhang, a post-doc for this study under Ramamoorthy Ramesh of Berkeley Lab's Materials Sciences Division and now a faculty member at Beijing Normal University. "Also because our bismuth ferrite can be activated with only an electrical field rather the thermal fields needed to activate shape-memory alloys, the response time is much faster."

The shape-memory effect is the metallic equivalent of elasticity, in which a solid material "remembers" and recovers its original shape after being deformed by an applied stress. In the past, this has always involved heating. Shape-memory alloys have had a big impact in the medical field with the most prominent being nickel-titanium or "nitinol," which is used in stents for angioplasty, and in mechanical joints. The shape-memory effect is also expected to have a major impact in non-medical applications, such as actuators in smart materials and in Microelectro-Mechanical Systems (MEMS). However, as the size of current shape-memory alloys shrink towards the nano-scale, numerous problems and instabilities arise, including fatigue, micro-cracking and oxidation.

"By achieving the shape-memory effect in an oxide material rather than a metal alloy, we eliminate the surface issues and enable integration with microelectronics," says Zhang. "Our bismuth ferrite also displays an ultra-high work function density during actuation that is almost two orders of magnitude higher than what a metal alloy can generate."

Bismuth ferrite is multiferroic compound composed of bismuth, iron and oxygen that has been studied extensively in recent years by Ramesh and his research group. As a multiferroic, bismuth ferrite displays both ferroelectric and ferromagnetic properties, meaning it will respond to the application of external electric or magnetic fields. In this latest study, in addition to the conventional thermal activation, an elastic-like phase transition was introduced into bismuth ferrite using only an electric field.

"The application of the electric field allowed us to achieve a phase transformation that was reversible without the assistance of external recovery stress," Ramesh says. "Although aspects such as hysteresis, micro-cracking and so on have to be taken into consideration for real devices, the large shape-memory effect we demonstrated in bismuth ferrite shows it to be an extraordinary material with potential use in future nanoelectromechanical devices and other state-of-art nanosystems."

The bismuth ferrite shape-memory effect was characterized at the National Center for Electron Microscopy (NCEM), a U.S. Department of Energy national user facility housed at Berkeley Lab. Results of this research were published in the journal Nature Communications. The paper was titled "A nanoscale shape-memory oxide." In addition to Zhang and Ramesh, other co-authors were Xiaoxing Ke, Gaoyang Gou, Jan Seidel, Bin Xiang, Pu Yu, Wen-I Liang, Andrew Minor, Ying-hao Chu, Gustaaf Van Tendeloo and Xiaobing Ren.


Story Source:

The above story is based on materials provided by DOE/Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jinxing Zhang, Xiaoxing Ke, Gaoyang Gou, Jan Seidel, Bin Xiang, Pu Yu, Wen-I. Liang, Andrew M. Minor, Ying-hao Chu, Gustaaf Van Tendeloo, Xiaobing Ren, Ramamoorthy Ramesh. A nanoscale shape memory oxide. Nature Communications, 2013; 4 DOI: 10.1038/ncomms3768

Cite This Page:

DOE/Lawrence Berkeley National Laboratory. "Nanoscale shape-memory oxide discovered: Opens door to applications in medicine, energy and electronics." ScienceDaily. ScienceDaily, 3 December 2013. <www.sciencedaily.com/releases/2013/12/131203124909.htm>.
DOE/Lawrence Berkeley National Laboratory. (2013, December 3). Nanoscale shape-memory oxide discovered: Opens door to applications in medicine, energy and electronics. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2013/12/131203124909.htm
DOE/Lawrence Berkeley National Laboratory. "Nanoscale shape-memory oxide discovered: Opens door to applications in medicine, energy and electronics." ScienceDaily. www.sciencedaily.com/releases/2013/12/131203124909.htm (accessed October 23, 2014).

Share This



More Computers & Math News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Free Math App Is A Teacher's Worst Nightmare

Free Math App Is A Teacher's Worst Nightmare

Newsy (Oct. 22, 2014) — New photo-recognition software from MicroBlink, called PhotoMath, solves linear equations and simple math problems with step-by-step results. Video provided by Newsy
Powered by NewsLook.com
Rate Hike Worries Down on Inflation Data

Rate Hike Worries Down on Inflation Data

Reuters - Business Video Online (Oct. 22, 2014) — Inflation remains well under control according to the latest consumer price index, giving the Federal Reserve more room to keep interest rates low for awhile. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins