Featured Research

from universities, journals, and other organizations

Electrical control of single atom magnets

Date:
December 8, 2013
Source:
University College London
Summary:
The energy needed to change the magnetic orientation of a single atom -- which determines its magnetic stability and therefore its usefulness in a variety of future device applications -- can be modified by varying the atom's electrical coupling to nearby metals.

The energy needed to change the magnetic orientation of a single atom -- which determines its magnetic stability and therefore its usefulness in a variety of future device applications -- can be modified by varying the atom's electrical coupling to nearby metals.

This striking result was published today in the journal Nature Nanotechnology by an international group of scientists working at the London Centre for Nanotechnology (LCN) at UCL (UK), the Iberian Nanotechnology Laboratory (Portugal), the University of Zaragoza (Spain), and the Max Planck Institute of Microstructure Physics (Germany).

Anyone playing with two magnets can experience how they repel or attract each other depending on the relative orientation of their magnetic poles. The fact that in a given magnet these poles lie along a specific direction rather than being randomly oriented is known as magnetic anisotropy, and this property is exploited in a variety of applications ranging from compass needles to hard drives.

"For 'large' pieces of magnetic material," emphasized Dr Joaquín Fernández-Rossier from the INL, "magnetic anisotropy is determined primarily by the shape of a magnet. The atoms that form the magnetic material are also magnetic themselves, and therefore have their own magnetic anisotropy. However, atoms are so small that it is hardly possible to ascribe a shape to them, and the magnetic anisotropy of an atom is typically controlled by the position and charge of the neighbouring atoms."

Using a scanning tunnelling microscope, an instrument capable of observing and manipulating an individual atom on a surface, LCN researchers and their colleagues discovered a new mechanism that controls magnetic anisotropy at the atomic scale.

In their experiment, the research team observed dramatic variations in the magnetic anisotropy of individual cobalt atoms depending on their location on a copper surface capped with an atomically-thin insulating layer of copper nitride.

These variations were correlated with large changes in the intensity of another phenomenon -- the Kondo effect -- that arises from electrical coupling between a magnetic atom and a nearby metal. With the help of theoretical and computational modelling performed in Germany and Portugal, the researchers found that, in addition to the conventional structural mechanisms, the electronic interactions between the metal substrate and the magnetic atom can also play a major role in determining magnetic anisotropy.

"Electrical control of a property that formerly could only be tuned through structural changes will enable significant new possibilities when designing the smallest possible devices for information processing, data storage, and sensing," said LCN researcher Dr Cyrus Hirjibehedin.

In contrast to the more conventional mechanisms, this contribution to the magnetic anisotropy can be tuned electrically using the same process that drives many transistors, the field effect. These results are particularly timely because they support efforts to find material systems with large magnetic anisotropy that are free of rare earth elements, scarce commodities whose mining has large environmental impact.


Story Source:

The above story is based on materials provided by University College London. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jenny C. Oberg, M. Reyes Calvo, Fernando Delgado, María Moro-Lagares, David Serrate, David Jacob, Joaquín Fernández-Rossier, Cyrus F. Hirjibehedin. Control of single-spin magnetic anisotropy by exchange coupling. Nature Nanotechnology, 2013; DOI: 10.1038/NNANO.2013.264

Cite This Page:

University College London. "Electrical control of single atom magnets." ScienceDaily. ScienceDaily, 8 December 2013. <www.sciencedaily.com/releases/2013/12/131208133644.htm>.
University College London. (2013, December 8). Electrical control of single atom magnets. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2013/12/131208133644.htm
University College London. "Electrical control of single atom magnets." ScienceDaily. www.sciencedaily.com/releases/2013/12/131208133644.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) — Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins