Featured Research

from universities, journals, and other organizations

Salmonella jams signals from bacteria-fighting mast cells

Date:
December 12, 2013
Source:
Duke Medicine
Summary:
A protein in Salmonella inactivates mast cells -- critical players in the body’s fight against bacteria and other pathogens -- rendering them unable to protect against bacterial spread in the body, according to researchers.

In this Salmonella-infected mast cell, the Salmonella are shown in red. The green areas are packages of signaling molecules harbored in mast cells. Following infection by Salmonella, mast cells are no longer able to release their pre-stored chemical signals.
Credit: Duke Medicine

A protein in Salmonella inactivates mast cells -- critical players in the body's fight against bacteria and other pathogens -- rendering them unable to protect against bacterial spread in the body, according to researchers at Duke Medicine and Duke-National University of Singapore (Duke-NUS).

The study, conducted in mice, was published Dec. 12, 2013, in the journal Immunity.

"Ever since mast cells were discovered to be critical mobilizers of the body's powerful immune system, it has always been suspected that certain pathogens would have evolved mechanisms directed at undermining this cell," said senior study author Soman N. Abraham, Ph.D., professor of pathology, immunology, and molecular genetics and microbiology at Duke Medicine and professor of emerging infectious diseases at Duke-NUS.

Salmonella bacteria are a leading cause of foodborne illness. According to the CDC, approximately 42,000 cases of Salmonella infection are reported each year in the United States, but since many mild cases are not diagnosed, the number is likely much higher. Often transmitted through contaminated eggs, meat, raw fruits and vegetables, a 2012 Salmonella outbreak linked to cantaloupe sickened hundreds of people across 24 states.

While most individuals infected with Salmonella recover quickly, the infection can cause serious illness or even death, particularly among those with weakened immune systems. Salmonella is also becoming increasingly resistant to antibiotic treatment, leading researchers to develop vaccines to try and prevent the bacterial infection.

Studies have shown that Salmonella can rapidly invade the body's cells and hinder the immune system from mounting responses against future infections by impeding the actions of specific immune cells or targeting the lymph nodes. The rapid spread of Salmonella after breeching the gut barrier, however, suggests a more immediate mechanism for subverting the immune system.

An important component of the immune system is the mast cell, a distinct type of immune cell that initiates an early response to combat and clear invading pathogens. Mast cells are located in large numbers in the skin, gut, lung and bladder lining, which are common sites for pathogens to enter and attack the body.

Upon encountering invading bacteria or viruses, mast cells release large amounts of chemical signals, which recruit various pathogen-clearing immune cells from the blood to the site of infection. However, Salmonella has been shown to be an exception, as mast cells do not clear the bacteria.

To learn how Salmonella handicaps mast cells, Abraham and his colleagues studied Salmonella infection in mice. They found that when mice were exposed to Salmonella via injection or oral administration, a protein called Salmonella protein tyrosine phosphatase (SptP) shut down the mast cells' ability to release chemical signals without impacting other cellular functions.

The researchers observed that SptP inactivated at least two key cellular components involved in exporting chemical signals out of mast cells. As a result of the mast cells being unable to call for help, immune cells were not recruited to the infection site, allowing Salmonella to multiply and spread unchecked.

In another experiment, the researchers administered SptP to mice infected with E. coli, a relatively innocuous type of bacteria. With SptP suppressing the mast cells, E. coli was able to spread inside the mouse just as quickly as Salmonella, suggesting that inactivating mast cells is a key determinant in the spread of pathogens. The researchers also found that Yersinia pestis, the pathogen responsible for plague, expressed an SptP-like protein that also suppressed mast cells. They now think that the spread of plague bacteria in the body may also involve mast cell suppression.

By pinpointing SptP as the mechanism that inactivates mast cells in Salmonella infection allowing for bacterial spread in the body, Abraham said the researchers can apply their findings to seek out better preventive and treatment options for this significant public health concern.

"The current vaccines against Salmonella are largely ineffective and short lived," Abraham said. "Our discovery of the virulent properties of SptP raises the possibility of using this information to evoke effective and long-lived protection against Salmonella infection."

In addition to Abraham, study authors include Hae Woong Choi, Rhea Brooking-Dixon, Subham Neupane, Chul-Jin Lee and Herman F. Staats of Duke, as well as Edward A. Miao of the University of North Carolina at Chapel Hill. The National Institutes of Health (U01-AI082107, R01-AI096305 and R56-DK095198) and Duke-NUS funded the study.


Story Source:

The above story is based on materials provided by Duke Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hae Woong Choi, Rhea Brooking-Dixon, Subham Neupane, Chul-Jin Lee, Edward A. Miao, Herman F. Staats, Soman N. Abraham. Salmonella Typhimurium Impedes Innate Immunity with a Mast-Cell-Suppressing Protein Tyrosine Phosphatase, SptP. Immunity, 2013 DOI: 10.1016/j.immuni.2013.11.009

Cite This Page:

Duke Medicine. "Salmonella jams signals from bacteria-fighting mast cells." ScienceDaily. ScienceDaily, 12 December 2013. <www.sciencedaily.com/releases/2013/12/131212123217.htm>.
Duke Medicine. (2013, December 12). Salmonella jams signals from bacteria-fighting mast cells. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2013/12/131212123217.htm
Duke Medicine. "Salmonella jams signals from bacteria-fighting mast cells." ScienceDaily. www.sciencedaily.com/releases/2013/12/131212123217.htm (accessed September 30, 2014).

Share This



More Health & Medicine News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How 'Yes Means Yes' Defines Sexual Assault

How 'Yes Means Yes' Defines Sexual Assault

Newsy (Sep. 29, 2014) Aimed at reducing sexual assaults on college campuses, California has adopted a new law changing the standard of consent for sexual activity. Video provided by Newsy
Powered by NewsLook.com
Scientists May Have Found An Early Sign Of Pancreatic Cancer

Scientists May Have Found An Early Sign Of Pancreatic Cancer

Newsy (Sep. 29, 2014) Researchers looked at 1,500 blood samples and determined people who developed pancreatic cancer had more branched chain amino acids. Video provided by Newsy
Powered by NewsLook.com
Colo. Doctors See Cluster of Enterovirus Cases

Colo. Doctors See Cluster of Enterovirus Cases

AP (Sep. 29, 2014) Doctors at the Children's Hospital of Colorado say they have treated over 4,000 children with serious respiratory illnesses since August. Nine of the patients have shown distinct neurological symptoms, including limb weakness. (Sept. 29) Video provided by AP
Powered by NewsLook.com
Dr.'s Unsure of Cause of Fast-Spreading Virus

Dr.'s Unsure of Cause of Fast-Spreading Virus

AP (Sep. 29, 2014) Doctors at the Children's Hospital of Colorado say they have treated over 4,000 children with serious respiratory illnesses since August. Nine of the patients have shown distinct neurological symptoms, including limb weakness. (Sept. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins