Featured Research

from universities, journals, and other organizations

Smashing science: Scientists discover how explosives respond to shockwaves

Date:
December 12, 2013
Source:
DOE/Lawrence Livermore National Laboratory
Summary:
Researchers have combined ultrafast time-resolved experimental measurements with theory to reveal how an explosive responds to a high-impact shock.

A schematic representation of the shock experiment. The resulting energy release pushed the shock front to the left.
Credit: Liam Krauss/LLNL

Lawrence Livermore National Laboratory researchers have combined ultrafast time-resolved experimental measurements with theory to reveal how an explosive responds to a high-impact shock.

The work involved advances in both ultrafast experimental shock wave methods and molecular dynamics (MD) simulation techniques, and the combination of experiment and simulation is a milestone in understanding chemical initiation and detonation.

When an energetic material is hit hard and fast enough it will explode. What occurs between the moment of initial impact and the time the explosion occurs continues to be a highly studied topic.

"Hydrogen peroxide, composed of one oxygen-oxygen bond and two oxygen-hydrogen bonds within a hydrogen bonding network afforded us the opportunity to study a very complex process using a relatively simple molecular liquid," said project leader Sorin Bastea. "We also knew that the final reaction products would be simple too: They are just oxygen and water."

The Livermore team demonstrated that 50 trillionths of a second (50 picoseconds) after the peroxide was shocked it begins to tear apart. The chemical bonds were completely broken by 100 picoseconds. The temperature increased by more than 1,500 degrees and the explosive pressure wave spiked to more than 200,000 atmospheres.

"What is unique about this research effort is that we have ultrafast time-resolved experimental data that corroborate our theoretical predictions on the exact same timescale," said Nir Goldman who, along with Will Kuo, led the simulation efforts.

The experiment, led by Mike Armstrong and Joe Zaug, used a very short burst of laser energy to blast into a 0.001 millimeter-thick aluminum film that was in contact with the peroxide. They measured the shockwave speed as it traveled through the fluid using a technique called optical interferometry.

"At the initiation threshold, we were able to directly observe a significant jump in the shock velocity, indicating that we had mechanically initiated chemical reactions in the sample," Armstrong said.

With the help of additional high-pressure sound-speed measurements made by Zaug and Jonathan Crowhurst, Bastea was able to further calculate the amount of chemical reaction observed in the team's ultrafast shock experiments to be approximately 50 percent. Bastea emphasized that the collaboration between experimentalists and theorists was key to enabling a more comprehensive understanding of shock-induced chemical initiation.

"This is a step forward where eventually we can have a better understanding of how to control the delivery of chemical energy for a variety of energetic materials applications," Bastea said.

Video: https://www.llnl.gov/news/newsreleases/2013/Dec/videos/1202_detonation.mpg

The work was supported by Laboratory Directed Research and Development, and the research team included Armstrong and Zaug as co-principal authors, Goldman and Kuo performing molecular dynamics simulations, thermochemical calculations from Bastea, hydrodynamic calculations from Mike Howard, and additional experimental support from Crowhurst, Jeffrey Carter, Michaele Kashgarian, John (Bud) Chesser and Troy Barbee Jr.


Story Source:

The above story is based on materials provided by DOE/Lawrence Livermore National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Michael R. Armstrong, Joseph M. Zaug, Nir Goldman, I-Feng W. Kuo, Jonathan C. Crowhurst, W. Michael Howard, Jeffrey A. Carter, Michaele Kashgarian, John M. Chesser, Troy W. Barbee, Sorin Bastea. Ultrafast Shock Initiation of Exothermic Chemistry in Hydrogen Peroxide. The Journal of Physical Chemistry A, 2013; 117 (49): 13051 DOI: 10.1021/jp407595u

Cite This Page:

DOE/Lawrence Livermore National Laboratory. "Smashing science: Scientists discover how explosives respond to shockwaves." ScienceDaily. ScienceDaily, 12 December 2013. <www.sciencedaily.com/releases/2013/12/131212132515.htm>.
DOE/Lawrence Livermore National Laboratory. (2013, December 12). Smashing science: Scientists discover how explosives respond to shockwaves. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2013/12/131212132515.htm
DOE/Lawrence Livermore National Laboratory. "Smashing science: Scientists discover how explosives respond to shockwaves." ScienceDaily. www.sciencedaily.com/releases/2013/12/131212132515.htm (accessed August 29, 2014).

Share This




More Matter & Energy News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins