Featured Research

from universities, journals, and other organizations

Oil- and metal-munching microbes dominate deep sandstone formations

Date:
December 18, 2013
Source:
University of Illinois at Urbana-Champaign
Summary:
Halomonas are a hardy breed of bacteria. They can withstand heat, high salinity, low oxygen, utter darkness and pressures that would kill most other organisms. These traits enable these microbes to eke out a living in deep sandstone formations that also happen to be useful for hydrocarbon extraction and carbon sequestration, researchers report in a new study.

Study leader Bruce Fouke conducts research on microbes in extreme environments. His work in Yellowstone offers a basis for interpreting new research on subterranean microbes.
Credit: Tom Murphy

Halomonas are a hardy breed of bacteria. They can withstand heat, high salinity, low oxygen, utter darkness and pressures that would kill most other organisms. These traits enable these microbes to eke out a living in deep sandstone formations that also happen to be useful for hydrocarbon extraction and carbon sequestration, researchers report in a new study.

The analysis, the first unobstructed view of the microbial life of sandstone formations more than a mile below the surface, appears in the journal Environmental Microbiology.

"We are using new DNA technologies to understand the distribution of life in extreme natural environments," said study leader Bruce Fouke, a professor of geology and of microbiology at the University of Illinois at Urbana-Champaign. Fouke also is an investigator with the Energy Biosciences Institute, which funded the research, and an affiliate of the Institute for Genomic Biology at Illinois.

Underground microbes are at least as diverse as their surface-dwelling counterparts, Fouke said, and that diversity has gone largely unstudied.

"Astonishingly little is known of this vast subsurface reservoir of biodiversity, despite our civilization's regular access to and exploitation of subterranean environments," he said.

To address this gap in knowledge, Fouke and his colleagues collected microbial samples from a sandstone reservoir 1.8 kilometers (1.1 miles) below the surface.

The team used a probe developed by the oilfield services company Schlumberger that reduces or eliminates contamination from mud and microbes at intermediate depths. The researchers sampled sandstone deposits of the Illinois Basin, a vast, subterranean bowl underlying much of Illinois and parts of Indiana, Kentucky and Tennessee, and a rich source of coal and oil.

A genomic study and analysis of the microbes the team recovered revealed "a low-diversity microbial community dominated by Halomonas sulfidaeris-like bacteria that have evolved several strategies to cope with and survive the high-pressure, high-temperature and nutrient deprived deep subsurface environment," Fouke said.

An analysis of the microbes' metabolism found that these bacteria are able to utilize iron and nitrogen from their surroundings and recycle scarce nutrients to meet their metabolic needs. (Another member of the same group, Halomonas titanicae, is so named because it is consuming the iron superstructure of the Titanic.)

Perhaps most importantly, the team found that the microbes living in the deep sandstone deposits of the Illinois Basin were capable of metabolizing aromatic compounds, a common component of petroleum.

"This means that these indigenous microbes would have the adaptive edge if hydrocarbon migration eventually does occur," Fouke said.

A better understanding of the microbial life of the subterranean world will "enhance our ability to explore for and recover oil and gas, and to make more environmentally sound choices for subsurface gas storage," he said.

The research team also included scientists from The Institute for Systems Biology, in Seattle; the Mayo Clinic; the Asia Pacific Center for Theoretical Physics in South Korea; Shell Oil Co.; Argonne National Laboratory; four U. of I. departments: chemical and biomolecular engineering, civil and environmental engineering, natural resources and environmental sciences, and animal sciences; and the Illinois State Geological Survey at the Prairie Research Institute at Illinois.

The Energy Biosciences Institute is a research collaboration involving the U. of I., the University of California at Berkeley, the Lawrence Berkeley National Laboratory, and BP, the energy company that funds the work.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yiran Dong, Charu Gupta Kumar, Nicholas Chia, Pan-Jun Kim, Philip A. Miller, Nathan D. Price, Isaac K. O. Cann, Theodore M. Flynn, Robert A. Sanford, Ivan G. Krapac, Randall A. Locke, Pei-Ying Hong, Hideyuki Tamaki, Wen-Tso Liu, Roderick I. Mackie, Alvaro G. Hernandez, Chris L. Wright, Mark A. Mikel, Jared L. Walker, Mayandi Sivaguru, Glenn Fried, Anthony C. Yannarell, Bruce W. Fouke. Halomonas sulfidaeris-dominated microbial community inhabits a 1.8 km-deep subsurface Cambrian Sandstone reservoir. Environmental Microbiology, 2014; DOI: 10.1111/1462-2920.12325

Cite This Page:

University of Illinois at Urbana-Champaign. "Oil- and metal-munching microbes dominate deep sandstone formations." ScienceDaily. ScienceDaily, 18 December 2013. <www.sciencedaily.com/releases/2013/12/131218113020.htm>.
University of Illinois at Urbana-Champaign. (2013, December 18). Oil- and metal-munching microbes dominate deep sandstone formations. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2013/12/131218113020.htm
University of Illinois at Urbana-Champaign. "Oil- and metal-munching microbes dominate deep sandstone formations." ScienceDaily. www.sciencedaily.com/releases/2013/12/131218113020.htm (accessed August 22, 2014).

Share This




More Plants & Animals News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Endangered Red Wolves Face Uncertain Future

Endangered Red Wolves Face Uncertain Future

AP (Aug. 22, 2014) A federal judge temporarily banned coyote hunting to save endangered red wolves, but local hunters say that the wolf preservation program does more harm than good. Meanwhile federal officials are reviewing its wolf program in North Carolina. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Farm Resurgence Grows With Younger Crowd

Farm Resurgence Grows With Younger Crowd

AP (Aug. 22, 2014) New England farms are seeing a surge in younger farm hands as the 'buy local' food movement grows across the country. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins