Featured Research

from universities, journals, and other organizations

Scientists decode serotonin receptor at room temperature

Date:
December 19, 2013
Source:
Deutsches Elektronen-Synchrotron DESY
Summary:
An international research team has decoded the molecular structure of the medically important serotonin receptor at room temperature for the first time. This study reveals the dynamics of the receptor at close to its operating temperature and thus gives a more realistic picture of its physiological function.

The serotonin receptor structure bound to ergotamine (green), and showing resolved lipids (gray), palmitic acid (blue) and cholesterol (yellow). The approximate membrane boundary are shown as a gray box.
Credit: Vadim Cherezov/The Scripps Research Institute

An international research team has decoded the molecular structure of the medically important serotonin receptor at room temperature for the first time. This study reveals the dynamics of the receptor at close to its operating temperature and thus gives a more realistic picture of its physiological function than it was possible before with conventional deep freeze analyses in liquid nitrogen at minus 173 degrees Celsius. The team led by Prof. Vadim Cherezov of The Scripps Research Institute in La Jolla, California, reports its work in the scientific journal Science. The research could lead to better designed drugs. The study also opens up new ways for investigating large biomolecules.

Related Articles


Serotonin is an important neurotransmitter and is involved in the regulation of numerous body functions like blood pressure, digestion and intra-ocular pressure, but also mood, appetite and addiction. This makes the serotonin receptor an important drug target. Knowing its molecular structure could allow for the development of tailor-made drugs that fit to the receptor like a key into a lock.

"Scientists have been keen on decoding the structure of the serotonin receptor for decades," said co-author Cornelius Gati from Prof. Henry Chapman΄s group at the Hamburg Center for Free-Electron Laser Science CFEL, a cooperation of DESY, the University of Hamburg and the Max Planck Society. But only this year, a group including Cherezov succeeded in decoding the structure of the receptor in a classical crystallographic analysis at a so-called synchrotron light source.

For these kinds of investigations, biomolecules usually have to be crystallised. This can be very hard and sometimes even impossible to do with a group of molecules called membrane proteins, to which the serotonin receptor belongs. Once crystals are grown, they are shock frozen and illuminated with X-rays from the synchrotron light source. The X-rays produce characteristic diffraction patterns from which the structure of the sample can be calculated.

For the new study, the team used the world's strongest X-ray laser, the Linac Coherent Light Source at SLAC National Accelerator Laboratory in Menlo Park, California. The LCLS generates 120 intense X-ray flashes per second, each a billion times brighter than a conventional synchrotron. With these bright flashes, even the smallest crystals can be analysed. The crystals do not have to be frozen, as they are evaporated by the bright flash. But before they disintegrate, their inner structure can be recorded at much better fidelity than possible with the synchrotron. "The X-ray laser pulses are less than 30 femtoseconds in duration, the time it takes light to travel only 10 micrometres, less than the width of a human hair," explained Chapman. "Each incredibly brief but powerful flash of X-rays literally outruns any damage or disintegration of the crystal from this radiation, giving us strong and pristine structural information."

"Room temperature structures should better represent conformational states of proteins in their native environment and may serve as better templates for structure-based drug design," said Cherezov.

For the investigation at the X-ray laser, the researchers grew tiny crystals of the serotonin receptor with the molecule ergotamine attached, which is a migraine drug that targets this receptor. To overcome the difficulties in crystallisation, the researchers used an artificial cell membrane environment called lipid cubic phase, LCP, that at least allowed to grow micro-crystals. But LCP is more viscous than toothpaste and cannot be sprayed into the X-ray beam like a fluid suspension. That's why a team at Arizona State University developed a tailor-made injector that is able to shoot a steady but tiny stream of LCP through the X-ray path.

"The 'toothpaste' injector, designed by Prof. Uwe Weierstall at Arizona State University, can control the flow rate and adjust it so that there is a minimal waste of crystals between LCLS pulses, reducing the amount of crystals required for data collection a hundred- to a thousand-fold compared to liquid injectors," said Cherezov. This allowed over 150,000 patterns to be collected from individual crystals that were steadily replenished by the injector. The enormous volume of data was processed by Gati using software called CrystFEL specifically created for this method.

The research team compared the structure data from the X-ray laser with the structure resolved at the synchrotron. "One of the most important results of this work is that the structure obtained at LCLS is almost identical to the structure obtained with traditional crystallography, despite the fact that the LCLS data were collected from crystals 100 times smaller by volume and at room temperature," Cherezov stressed.

Differences in the two structures analyses stem in part from the fact that at cryo-temperatures some flexible loops of the receptor appear more rigid than they are at room temperature. The dynamics of the loops are important for the binding of signalling molecules inside and outside of the cell.

The study opens new analytical methods for a whole class of biomolecules. The serotonin receptor belongs to a large group called G protein-coupled receptors, or GPCRs. This group of about 800 receptors plays a central role in transferring signals from the environment into the cell and is of great interest for drug development. About 30 to 40 per cent of all prescription drugs target GPCRs.

"This is the first protein crystal structure of a human membrane protein at room temperature," said Gati. "Our work shows that it is possible to analyse micro-crystals of biomolecules at room temperature, leading to more realistic results. This may allow for an optimised drug development as more of the dynamics of the receptor is visible."

This path is also followed by the Hamburg Center for Ultrafast Imaging CUI on the DESY campus, with which Gati and Chapman are also affiliated, and which partly supported this work. CUI is a cooperation of DESY, the University of Hamburg, the Max Planck Society, the European Microbiology Laboratory and the European XFEL.


Story Source:

The above story is based on materials provided by Deutsches Elektronen-Synchrotron DESY. Note: Materials may be edited for content and length.


Journal Reference:

  1. W. Liu, D. Wacker, C. Gati, G. W. Han, D. James, D. Wang, G. Nelson, U. Weierstall, V. Katritch, A. Barty, N. A. Zatsepin, D. Li, M. Messerschmidt, S. Boutet, G. J. Williams, J. E. Koglin, M. M. Seibert, C. Wang, S. T. A. Shah, S. Basu, R. Fromme, C. Kupitz, K. N. Rendek, I. Grotjohann, P. Fromme, R. A. Kirian, K. R. Beyerlein, T. A. White, H. N. Chapman, M. Caffrey, J. C. H. Spence, R. C. Stevens, V. Cherezov. Serial Femtosecond Crystallography of G Protein-Coupled Receptors. Science, 2013; 342 (6165): 1521 DOI: 10.1126/science.1244142

Cite This Page:

Deutsches Elektronen-Synchrotron DESY. "Scientists decode serotonin receptor at room temperature." ScienceDaily. ScienceDaily, 19 December 2013. <www.sciencedaily.com/releases/2013/12/131219142235.htm>.
Deutsches Elektronen-Synchrotron DESY. (2013, December 19). Scientists decode serotonin receptor at room temperature. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2013/12/131219142235.htm
Deutsches Elektronen-Synchrotron DESY. "Scientists decode serotonin receptor at room temperature." ScienceDaily. www.sciencedaily.com/releases/2013/12/131219142235.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) — A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
First Etihad Superjumbo Flight in December

First Etihad Superjumbo Flight in December

AFP (Dec. 18, 2014) — The first flight of Etihad Airways' long-awaited Airbus A380 superjumbo will take place later in December, the Abu Dhabi carrier said Thursday, also announcing its first Boeing 787 Dreamliner route. Duration: 01:09 Video provided by AFP
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) — The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


New Way to Map Important Drug Targets: Faster, More Accurate Imaging of Hard-to-Study Membrane Proteins

Dec. 19, 2013 — Researchers have used new techniques and one of the brightest X-ray sources on the planet to map the 3-D structure of an important cellular gatekeeper in a more natural state than possible ... read more

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins