Featured Research

from universities, journals, and other organizations

Catching the big wave: 'Universal ripple' could hold the secret to high-temperature superconductivity

Date:
December 19, 2013
Source:
University of British Columbia
Summary:
Researchers have discovered a universal electronic state that controls the behavior of high-temperature superconducting copper-oxide ceramics.

This is a copper-oxide superconducting pellet levitating over a magnetic track.
Credit: UBC Physics

UBC researchers have discovered a universal electronic state that controls the behavior of high-temperature superconducting copper-oxide ceramics.

The work, published this week in the journal Science, reveals the universal existence of so-called 'charge-density-waves' -- static ripples formed by the self-organization of electrons in the material's normal state. These ripples carry the seeds out of which superconductivity emerges.

"Our understanding of superconductivity in the cuprate family has been hindered by the diversity of intertwining electronic orders," says UBC PhD student Riccardo Comin, lead author on the paper with colleagues at UBC's Quantum Matter Institute, the Max-Planck-UBC Centre for Quantum Materials, and a consortium of research institutions in Canada, the United States and Japan.

"These new findings suggest the existence of a universal charge-ordering that is common to all cuprate materials, and uncover its connection to the emergence of superconducting behavior."

The work also proves that researchers can interchangeably use two techniques -- resonant X-ray scattering or scanning tunnelling microscopy -- to probe the mysteries of charge-density-waves.

"These are fundamental, but very subtle, features which leave only a faint spectroscopic fingerprint," says UBC professor Andrea Damascelli, leader of the research team. "The success in detecting these tiny ripples in the electron distribution demonstrates the far-reaching power of these complementary techniques, and their pivotal role in advancing our understanding of quantum materials."

Background

Superconductivity -- the phenomenon of electricity flowing with no resistance--occurs in some materials at very low temperatures. High-temperature cuprate superconductors are capable of conducting electricity without resistance at record temperatures, higher than the boiling point of liquid nitrogen. Because of their unrivaled characteristics, they represent the best candidates to advance current superconductor technology, which includes a broad range of applications such as: quantum computers, MRI, high-precision magnetometry, levitating high-speed trains, and lossless power lines.


Story Source:

The above story is based on materials provided by University of British Columbia. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. Comin, A. Frano, M. M. Yee, Y. Yoshida, H. Eisaki, E. Schierle, E. Weschke, R. Sutarto, F. He, A. Soumyanarayanan, Yang He, M. Le Tacon, I.S. Elfimov, J. E. Hoffman, G.A. Sawatzky, B. Keimer, and A. Damascelli. Charge Order Driven by Fermi-Arc Instability in Bi2 S2–x La x CuO6 δ. Science, 19 December 2013 DOI: 10.1126/science.1242996

Cite This Page:

University of British Columbia. "Catching the big wave: 'Universal ripple' could hold the secret to high-temperature superconductivity." ScienceDaily. ScienceDaily, 19 December 2013. <www.sciencedaily.com/releases/2013/12/131219142315.htm>.
University of British Columbia. (2013, December 19). Catching the big wave: 'Universal ripple' could hold the secret to high-temperature superconductivity. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2013/12/131219142315.htm
University of British Columbia. "Catching the big wave: 'Universal ripple' could hold the secret to high-temperature superconductivity." ScienceDaily. www.sciencedaily.com/releases/2013/12/131219142315.htm (accessed September 21, 2014).

Share This



More Matter & Energy News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com
Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins