Featured Research

from universities, journals, and other organizations

Spinal cord findings could help explain origins of limb control

Date:
January 9, 2014
Source:
Northwestern University
Summary:
Researchers have found that the spinal cord circuits that produce body bending in swimming fish are more complicated than previously thought. In a study of zebrafish, they report that differential control of an animal's musculature -- the basic template for controlling more complex limbs, such as in humans -- is already in place in the spinal networks of simple fish. The data could help clarify how vertebrates made the transition from water to land.

We might have more in common with a lamprey than we think, according to a new Northwestern University study on locomotion. At its core, the study of transparent zebrafish addresses a fundamental evolution issue: How did we get here?

Neuroscientists Martha W. Bagnall and David L. McLean have found that the spinal cord circuits that produce body bending in swimming fish are more complicated than previously thought.

Vertebrate locomotion has evolved from the simple left-right bending of the body exemplified by lampreys to the appearance of fins in bony fish to the movement of humans, with the complex nerve and muscle coordination necessary to move four limbs.

Bagnall and McLean report that differential control of an animal's musculature -- the basic template for controlling more complex limbs -- is already in place in the spinal networks of simple fish. Neural circuits in zebrafish are completely segregated: individual neurons map to specific muscles.

Specifically, the neural circuits that drive muscle movement on the dorsal (or back) side are separate from the neural circuits activating muscles on the ventral (or front) side. This is in addition to the fish being able to separately control the left and right sides of its body.

Ultimately, understanding more about how fish swim will allow scientists to figure out how humans walk.

"Evolution builds on pre-existing patterns, and this is a critical piece of the puzzle," McLean said. "Our data help clarify how the transition from water to land could have been accomplished by simple changes in the connections of spinal networks."

The findings will be published Jan. 10 in the journal Science. McLean, an assistant professor of neurobiology in the Weinberg College of Arts and Sciences, and Bagnall, a postdoctoral fellow in his research group who made the discovery, are authors of the paper.

"This knowledge will put us in a better position to devise more effective therapies for when things go wrong with neural circuits in humans, such as spinal cord damage," McLean said. "If you want to fix something, you have to know how it works in the first place. Given that the fish spinal cord works in a similar fashion to our own, this makes it a fantastic model system for research."

McLean and Bagnall studied the motor neurons of baby zebrafish because the fish develop quickly and are see-through. They used state-of-art imaging techniques to monitor and manipulate neuronal activity in the fish.

"You can stare right into the nervous system," McLean said. "It's quite remarkable."

The separate circuits for moving the left and right and top and bottom of the fish allow the animal to twist its body upright when it senses that it has rolled too far to one side or the other.

"This arrangement is perfectly suited to provide rapid postural control during swimming," Bagnall said. "Importantly, this ancestral pattern of spinal cord organization may also represent an early functional template for the origins of limb control."

Separate control of dorsal and ventral muscles in the fish body is a possible predecessor to separate control of extensors and flexors in human limbs. By tweaking the connections between these circuits as they elaborated during evolution, it is easier to explain how more complicated patterns of motor coordination in the limbs and trunk could have arisen during dramatic evolutionary changes in the vertebrate body plan, the researchers said.

"We are teasing apart basic components of locomotor circuits," McLean said. "The molecular mechanisms responsible for building spinal circuits are conserved in all animals, so this study provides a nice hypothesis that scientists can test."


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Martha W. Bagnall and David L. McLean. Modular Organization of Axial Microcircuits in Zebrafish. Science, January 2014

Cite This Page:

Northwestern University. "Spinal cord findings could help explain origins of limb control." ScienceDaily. ScienceDaily, 9 January 2014. <www.sciencedaily.com/releases/2014/01/140109143804.htm>.
Northwestern University. (2014, January 9). Spinal cord findings could help explain origins of limb control. ScienceDaily. Retrieved April 21, 2014 from www.sciencedaily.com/releases/2014/01/140109143804.htm
Northwestern University. "Spinal cord findings could help explain origins of limb control." ScienceDaily. www.sciencedaily.com/releases/2014/01/140109143804.htm (accessed April 21, 2014).

Share This



More Plants & Animals News

Monday, April 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Newsy (Apr. 20, 2014) A 9-year-old Michigan boy was exploring a creek when he came across a 10,000-year-old tooth from a prehistoric mastodon. Video provided by Newsy
Powered by NewsLook.com
Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins