Featured Research

from universities, journals, and other organizations

Short circuit in molecular switch intensifies pain

Date:
January 14, 2014
Source:
KU Leuven
Summary:
While searching for novel painkillers, researchers came to the surprising conclusion that some candidate drugs actually increase pain. In a study published, the researchers show that a molecular switch in the nerves responsible for detecting pain can 'short-circuit', thus aggravating the onset of pain.

Pain functions as an important alarm signal. It alerts us to potential bodily harm -- a hot or sharp object, for example -- and motivates us to withdraw from damaging situations. At the cellular level, pain involves the stimulation of a network of pain nerves spread through the skin, mucosa and bodily organs.

Related Articles


Embedded in the cell wall surrounding these nerves are ion channels. These tiny, microscopic pathways respond to stimuli such as extreme cold or heat, mechanical pressure or harmful chemicals. When ion channels open, an electrical signal is created, transmitted to the brain, and interpreted as pain.

In previous research, the team of KU Leuven researchers led by Professor Thomas Voets (Laboratory of Ion Channel Research) and Professor Joris Vriens (Laboratory of Obstetrics and Experimental Gynaecology) discovered that a particular ion channel -- TRPM3 -- acts as a molecular fire detector: the ion channel detects heat and the hormone pregnenolone sulfate, a precursor to the sex hormones estrogen and testosterone and a trigger for pain and inflammation. In the present study, the researchers were looking for TRPM3 inhibitors that could potentially be used as painkillers.

Short circuit

Surprisingly, their results show that a number of drugs meant as painkillers actually increased pain in mice tested in the study, says Professor Voets: "Normally, when the ion channel is closed, no electrical signal is sent to the brain and therefore no pain is detected. But we found that pain can indeed occur despite a closed ion channel. How? A short circuit in the ion channel. When short-circuiting occurs, the electrical signal effected by a stimulus does not follow the normal pathway through the central pore of the ion channel. Instead, it navigates an alternative path through the surrounding material. This 'electrical leak' activates the pain nerves, thus increasing the sensation of pain. This may explain the pain-enhancing side effects of some drugs -- such as clotrimazole, a common remedy for yeast infections that often causes unpleasant side effects such as irritation and burning sensations."

"It is striking that short circuits in the ion channel only occur at high hormone levels. This could explain why some patients experience these side effects while others do not," says Professor Voets. The researchers hope this new knowledge about TRPM3-dependent pain will contribute to the development of new painkillers with fewer painful side effects.


Story Source:

The above story is based on materials provided by KU Leuven. Note: Materials may be edited for content and length.


Journal Reference:

  1. Joris Vriens, Katharina Held, Annelies Janssens, Balázs István Tóth, Sara Kerselaers, Bernd Nilius, Rudi Vennekens, Thomas Voets. Opening of an alternative ion permeation pathway in a nociceptor TRP channel. Nature Chemical Biology, 2014; DOI: 10.1038/nchembio.1428

Cite This Page:

KU Leuven. "Short circuit in molecular switch intensifies pain." ScienceDaily. ScienceDaily, 14 January 2014. <www.sciencedaily.com/releases/2014/01/140114103044.htm>.
KU Leuven. (2014, January 14). Short circuit in molecular switch intensifies pain. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2014/01/140114103044.htm
KU Leuven. "Short circuit in molecular switch intensifies pain." ScienceDaily. www.sciencedaily.com/releases/2014/01/140114103044.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins