Featured Research

from universities, journals, and other organizations

Lab-on-a-chip realizes potential

Date:
January 18, 2014
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
A portable instrument that replaces a full-size laboratory provides accurate multi-element analysis in less than a minute.

Analyses of liquid samples that once required a full-sized laboratory can now be completed on a disposable plastic chip equipped with narrow fluidic channels and tiny sensors.
Credit: 2013 A*STAR Institute of Materials Research and Engineering

A portable instrument that replaces a full-size laboratory provides accurate multi-element analysis in less than a minute

Engineers from the A*STAR Institute of Materials Research and Engineering and colleagues at the University of Basel, Switzerland, have designed and developed a compact, portable analytical instrument that can detect multiple ions and molecules down to a level of 300 parts per billion (ppb) in less than a minute.

The machine, based on lab-on-a-chip technology, needs only drop-sized liquid samples. The analysis is very quick, precise and sensitive, and can be performed remotely as no direct contact with the solution is necessary. As such, the device has widespread potential applications in the water, food and beverage, agriculture, environmental, pharmaceutical and medical industries.

"The instrument is now ready for commercialization," says Kambiz Ansari, who led the research. "In this well-studied field, it is one of only a handful of actual lab-on-a-chip instruments reported so far."

The easy-to-operate machine, which weighs only 1.2 kg, combines microchip electrophoresis (MCE) with a sensing technology known as a dual capacitively-coupled contactless conductivity detector (dC4D). The system first uses electrophoresis to separate ions and then detects the ions using dC4D. All analyses are performed in microfluidic channels consisting of capillaries inside polycarbonate plastic chips that are narrower than a human hair.

The beauty of the dC4D technology is its simplicity: it relies on remote conductivity measurements via a pair of electrodes. One electrode sends radio-frequency signals through a channel to the second electrode, and the signal received is read by a computer. Because the ions have charge, their resistance drops as they pass through the microfluidic channel, resulting in sudden peaks. Specially designed software then analyzes the data to provide both qualitative and quantitative information.

The instrument has two access compartments (see image). The front compartment houses a plastic chip and a replaceable cartridge detector for the testing; both are designed to eliminate noise. The back compartment houses the electronics and software, the data acquisition card and a battery that powers the instrument for up to 10 hours.

The researchers tested the instrument's capability to measure inorganic ions in water, rabbit blood and human urine, as well as organic and inorganic acids in fruit juice. They assessed its accuracy against standard methods.

"We have been approached about licensing the technology by several companies active in clinical analyses and in the ornamental fish farm industry," Ansari says. "And, we are hoping to further develop our system to achieve detection levels lower than 1 ppb by pre-concentrating the samples; we are also planning to introduce nanofluidics into the dC4D system."


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Kambiz Ansari, Jasmine Yuen Shu Ying, Peter C. Hauser, Nico F. de Rooij, Isabel Rodriguez. A portable lab-on-a-chip instrument based on MCE with dual top-bottom capacitive coupled contactless conductivity detector in replaceable cell cartridge. ELECTROPHORESIS, 2013; 34 (9-10): 1390 DOI: 10.1002/elps.201200592

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Lab-on-a-chip realizes potential." ScienceDaily. ScienceDaily, 18 January 2014. <www.sciencedaily.com/releases/2014/01/140118122415.htm>.
The Agency for Science, Technology and Research (A*STAR). (2014, January 18). Lab-on-a-chip realizes potential. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2014/01/140118122415.htm
The Agency for Science, Technology and Research (A*STAR). "Lab-on-a-chip realizes potential." ScienceDaily. www.sciencedaily.com/releases/2014/01/140118122415.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins