Featured Research

from universities, journals, and other organizations

Glass that bends but doesn't break: Natural forms inspire researchers to develop a technique to make glass less brittle

Date:
January 29, 2014
Source:
McGill University
Summary:
Scientists have successfully taken inspiration from the mechanics of natural structures like seashells in order to significantly increase the toughness of glass.

McGill researchers have turned to nature and objects like seashells for inspiration to create glass that is 200 times tougher than normal.
Credit: Image courtesy of McGill University

Normally when you drop a drinking glass on the floor it shatters. But, in future, thanks to a technique developed in McGill's Department of Mechanical Engineering, when the same thing happens the glass is likely to simply bend and become slightly deformed. That's because Prof. Franηois Barthelat and his team have successfully taken inspiration from the mechanics of natural structures like seashells in order to significantly increase the toughness of glass.

"Mollusk shells are made up of about 95 per cent chalk, which is very brittle in its pure form," says Barthelat. "But nacre, or mother-of-pearl, which coats the inner shells, is made up of microscopic tablets that are a bit like miniature Lego building blocks, is known to be extremely strong and tough, which is why people have been studying its structure for the past twenty years."

Previous attempts to recreate the structures of nacre have proved to be challenging, according to Barthelat. "Imagine trying to build a Lego wall with microscopic building blocks. It's not the easiest thing in the world." Instead, what he and his team chose to do was to study the internal 'weak' boundaries or edges to be found in natural materials like nacre and then use lasers to engrave networks of 3D micro-cracks in glass slides in order to create similar weak boundaries. The results were dramatic.

The researchers were able to increase the toughness of glass slides (the kind of glass rectangles that get put under microscopes) 200 times compared to non-engraved slides. By engraving networks of micro-cracks in configurations of wavy lines in shapes similar to the wavy edges of pieces in a jigsaw puzzle in the surface of borosilicate glass, they were able to stop the cracks from propagating and becoming larger. They then filled these micro-cracks with polyurethane, although according to Barthelat, this second process is not essential since the patterns of micro-cracks in themselves are sufficient to stop the glass from shattering.

The researchers worked with glass slides simply because they were accessible, but Barthelat believes that the process will be very easy to scale up to any size of glass sheet, since people are already engraving logos and patterns on glass panels. He and his team are excited about the work that lies ahead for them.

"What we know now is that we can toughen glass, or other materials, by using patterns of micro-cracks to guide larger cracks, and in the process absorb the energy from an impact," says Barthelat. "We chose to work with glass because we wanted to work with the archetypal brittle material. But we plan to go on to work with ceramics and polymers in future. Observing the natural world can clearly lead to improved man-made designs."


Story Source:

The above story is based on materials provided by McGill University. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Mirkhalaf, A. Khayer Dastjerdi, F. Barthelat. Overcoming the brittleness of glass through bio-inspiration and micro-architecture. Nature Communications, 2014; 5 DOI: 10.1038/ncomms4166

Cite This Page:

McGill University. "Glass that bends but doesn't break: Natural forms inspire researchers to develop a technique to make glass less brittle." ScienceDaily. ScienceDaily, 29 January 2014. <www.sciencedaily.com/releases/2014/01/140129114504.htm>.
McGill University. (2014, January 29). Glass that bends but doesn't break: Natural forms inspire researchers to develop a technique to make glass less brittle. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2014/01/140129114504.htm
McGill University. "Glass that bends but doesn't break: Natural forms inspire researchers to develop a technique to make glass less brittle." ScienceDaily. www.sciencedaily.com/releases/2014/01/140129114504.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Argentina's Tax Evaders Detected, Hunted Down by Drones

Argentina's Tax Evaders Detected, Hunted Down by Drones

AFP (Sep. 30, 2014) — Argentina doesn't only have Lionel Messi the footballer, it has now also acquired "Mesi" the drone system which monitors undeclared mansions, swimming pools and soy fields to curb tax evasion in the country. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) — More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) — CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com
This 'Invisibility Cloak' Is Simpler Than Most

This 'Invisibility Cloak' Is Simpler Than Most

Newsy (Sep. 28, 2014) — Researchers from the University of Rochester have created a type of invisibility cloak with simple focal lenses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins