Featured Research

from universities, journals, and other organizations

Quasi-particle swap between graphene layers

Date:
February 3, 2014
Source:
Springer Science+Business Media
Summary:
Equations used to describe parallel worlds in particle physics can help study the behavior of particles in parallel graphene layers. Scientists have used a particle physics theory to describe the behavior of particle-like entities, referred to as excitons, in two layers of graphene, a one-carbon-atom-thick honeycomb crystal.

Sketch of the two twisted graphene layers.
Credit: Image courtesy of Springer Science+Business Media

Belgian scientists have used a particle physics theory to describe the behaviour of particle-like entities, referred to as excitons, in two layers of graphene, a one-carbon-atom-thick honeycomb crystal. In a paper published in EPJ B, Michael Sarrazin from the University of Namur, and Fabrice Petit from the Belgian Ceramic Research Centre in Mons, studied the behaviour of excitons in a bilayer of graphene through an analogy with excitons evolving in two abstract parallel worlds, described with equations typically used in high-energy particle physics.

The authors used the equations reflecting a theoretical world consisting of a bi-dimensional space sheet -- a so-called brane -- embedded in a space with three dimensions. Specifically, the authors described the quantum behaviour of excitons in a universe made of two such brane worlds. They then made an analogy with a bilayer of graphene sheets, in which quantum particles live in a separate space-time.

They showed that this approach is adapted to study theoretically and experimentally how excitons behave when they are confined within the plane of the graphene sheet.

Sarrazin and his colleague have also theoretically shown the existence of a swapping effect of excitons between graphene layers under specific electromagnetic conditions. This swapping effect may occur as a solid-state equivalent of known particle swapping predicted in brane theory.

To verify their predictions, the authors suggest the design for an experimental device relying on a magnetically tunable optical filter. It uses magnets whose magnetic fields can be controlled with a separate external magnetic field. The excitons are first produced by shining an incident light onto the first graphene layer. The device then works by recording photons in front of the second graphene layer, which provide a clue to the decay of the exciton after it has swapped onto the second layer from the first.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. Michaλl Sarrazin, Fabrice Petit. Exciton swapping in a twisted graphene bilayer as a solid-state realization of a two-brane model. The European Physical Journal B, 2014; 87 (1) DOI: 10.1140/epjb/e2013-40492-5

Cite This Page:

Springer Science+Business Media. "Quasi-particle swap between graphene layers." ScienceDaily. ScienceDaily, 3 February 2014. <www.sciencedaily.com/releases/2014/02/140203112134.htm>.
Springer Science+Business Media. (2014, February 3). Quasi-particle swap between graphene layers. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2014/02/140203112134.htm
Springer Science+Business Media. "Quasi-particle swap between graphene layers." ScienceDaily. www.sciencedaily.com/releases/2014/02/140203112134.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) — Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) — Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) — Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) — Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins