Featured Research

from universities, journals, and other organizations

Primitive artificial cell turned into complex biological materials

Date:
February 4, 2014
Source:
University of Southern Denmark
Summary:
Imagine starting from scratch with simple artificial microscopic building blocks and ending up with something much more complex: living systems, novel computers or every-day materials. For decades scientists have pursued the dream of creating artificial building blocks that can self-assemble in large numbers and reassemble to take on new tasks or to remedy defects. Now researchers have taken a step forward to make this dream into a reality.

Illustration: Green artificial vesicle is loaded with a basic cellular machinery derived from bacterial cells. This enables it to translate an encapsulated genetic blueprint into a functional protein. The green vesicle is surrounded by other artificial primitive vesicles without cellular machinery.
Credit: Illustration from the research paper in Langmuir

Imagine starting from scratch with simple artificial microscopic building blocks and ending up with something much more complex: living systems, novel computers or every-day materials. For decades scientists have pursued the dream of creating artificial building blocks that can self-assemble in large numbers and reassemble to take on new tasks or to remedy defects. Now researchers have taken a step forward to make this dream into a reality.

"The potential of such new human-made systems is almost limitless, and many expect these novel materials to become the foundation of future technologies," says Dr. Maik Hadorn from Department of Chemistry and Applied Biosciences at ETH Zürich, who conducted the research as a postdoctoral research fellow at University of Southern Denmark (SDU).

Over the last three years he and the colleagues Eva Boenzli, Kristian T. Sørensen and Martin M. Hanczyc from the Center for Fundamental Living Technology (FLinT) at SDU have worked on the challenges of making primitive building blocks assemble and turn into something functional.

"We used short DNA strands as smart glue to link preliminary stages of artificial cells (called artificial vesicles) to engineer novel tissue-like structures," says Dr. Maik Hadorn.

As part of the EU-sponsored project MATCHIT (MATrix for CHemical Information Technology) Dr. Maik Hadorn and coworkers have earlier showed that short DNA strands can guide the self-assembly process of artificial vesicles; that two types of artificial vesicles can be linked in a way predefined by the person conducting the experiment, and that assembled structures can be reassembled, when triggered externally.

In their most recent scientific article, published in Langmuir in December 2013, the researchers from SDU, in collaboration with colleagues from Italy and Japan, not only increased the complexity of the self-assembled structures that are now composed of several types of artificial vesicles -- they also loaded one vesicle type with a basic cellular machinery derived from bacterial cells. This enabled these vesicles to translate an encapsulated genetic blueprint into a functional protein.

Put together the researchers have managed to engineer controlled assemblies that are visible to the naked eye and that resemble natural tissues in their architecture as well as in their functionalities.

Methods of constructing simple artificial structures have been known for decades, but only the use of DNA strands that act as a smart glue has allowed the researchers to overcome shortcomings of precedent methods and to engineer higher-order structures of predefined and programmable architecture.

"As the artificial vesicles resemble natural cells both in size and composition, they are an ideal starting point for a multitude of applications. One application can be a temporal support for wound healing: A wound may be covered with assemblies of vesicles that are tailored in a patient specific manner. They will not only protect the natural cells beneath the wound but also initiate and guide the differentiation of these cells so that they divide and differentiate. Finally, these regenerated natural cells can take over and fulfill their protective function," explains Maik Hadorn.

The new systems are also of value in studying cells: "Natural organisms are complex. Simple model systems like our tissue-like structures may help to reveal secrets for example of cell communication and cell differentiation."

Besides these two potential applications in personalized medicine and natural sciences, one can also think of using assembled vesicles as small bioreactors.

"It's somehow like cooking," Dr. Hadorn explains: "If you're preparing a meal, most of the time you're not using just one pot. To prepare your meat, potatoes, and also the vegetables in just one pot is almost impossible. By using different pots you're making sure that the conditions for the preparation of each component are optimal and that the components only meet if they are ready. Transferred to current one-pot bioreactors in science we often face similar problems. However, by using microscopic pots (i.e. vesicles) that are loaded with a defined set of substances and that are in close proximity to one another, one can think of microscopic bioreactors in which gates open to release substances from one vesicle into a neighboring vesicles. This ensures that the reaction conditions are optimal for the synthesis of products too complex for today's one-pot bioreactors."


Story Source:

The above story is based on materials provided by University of Southern Denmark. Note: Materials may be edited for content and length.


Journal References:

  1. Maik Hadorn, Peter Eggenberger Hotz. DNA-Mediated Self-Assembly of Artificial Vesicles. PLoS ONE, 2010; 5 (3): e9886 DOI: 10.1371/journal.pone.0009886
  2. M. Hadorn, E. Boenzli, K. T. Sorensen, H. Fellermann, P. Eggenberger Hotz, M. M. Hanczyc. Specific and reversible DNA-directed self-assembly of oil-in-water emulsion droplets. Proceedings of the National Academy of Sciences, 2012; 109 (50): 20320 DOI: 10.1073/pnas.1214386109
  3. Maik Hadorn, Eva Boenzli, Kristian T. Sørensen, Davide De Lucrezia, Martin M. Hanczyc, Tetsuya Yomo. Defined DNA-Mediated Assemblies of Gene-Expressing Giant Unilamellar Vesicles. Langmuir, 2013; 29 (49): 15309 DOI: 10.1021/la402621r

Cite This Page:

University of Southern Denmark. "Primitive artificial cell turned into complex biological materials." ScienceDaily. ScienceDaily, 4 February 2014. <www.sciencedaily.com/releases/2014/02/140204112127.htm>.
University of Southern Denmark. (2014, February 4). Primitive artificial cell turned into complex biological materials. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2014/02/140204112127.htm
University of Southern Denmark. "Primitive artificial cell turned into complex biological materials." ScienceDaily. www.sciencedaily.com/releases/2014/02/140204112127.htm (accessed September 2, 2014).

Share This




More Matter & Energy News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) — Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) — Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) — Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) — An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins