Featured Research

from universities, journals, and other organizations

It's the water: Graphene balloon yields unprecedented images of hydrated protein molecules

Date:
February 5, 2014
Source:
Michigan Technological University
Summary:
An ingenious new technique may open up new vistas for scientists seeking to understand health and disease at the most fundamental level.

In this image generated by an electron microscope, the white dots are the protein ferritin. The dark circle in the middle is a bubble trapped within the graphene capsule enclosing the sample, proving the existence of a liquid.
Credit: Chanhui Wang

A graphene water balloon may soon open up new vistas for scientists seeking to understand health and disease at the most fundamental level.

Electron microscopes already provide amazingly clear images of samples just a few nanometers across. But if you want a good look at living tissue, look again.

"You can't put liquid in an electron microscope," says Tolou Shokuhfar, of Michigan Technological University. "So, if you have a hydrated sample -- and all living things are hydrated -- you have to freeze it, like a blueberry in an ice cube, and cut it into a million thin pieces, so the electrons can pass through. Only then can you image it to see what's going on."

After such treatment, the blueberry isn't what it was, and neither is human tissue. Shokuhfar, an assistant professor of mechanical engineering-engineering mechanics, wondered if there might be a way to make electron microscopes more friendly to biological samples. That way, you might get a much better view of what's really going on at the sub-cellular level.

So she joined colleagues at the University of Illinois-Chicago (UIC), and together they found a way. "You don't need to freeze the blueberry, you don't need to slice it up with a diamond knife," she said. "You just put it in the electron microscope, and you can get down and see the atoms."

The trick was to encapsulate the sample so that all the water stayed put while the electrons passed through freely. To do that, the team, including Robert F. Klie, an associate professor of physics and mechanical and industrial engineering at UIC, and UIC graduate student Canhui Wang, turned to graphene.

"Graphene is just a single layer of carbon atoms, and electrons can go through it easily, but water does not," Klie said. "If you put a drop of water on graphene and top it with graphene, it forms this little balloon of water." The graphene is strong enough to hold the water inside, even within the vacuum of an electron microscope.

The team tried their technique on a biochemical that plays a major role in human health: ferritin. "It's a protein that stores and releases iron, which is critical for many body functions, and if ferritin isn't working right, it may be contributing to lots of diseases, including Alzheimer's and cancer," Shokuhfar said.

The team made a microscopic sandwich, with ferritin immersed in water as the filling and graphene as the bread, and sealed the edges. Then, using a scanning transmission electron microscope, they captured a variety of images showing ferritin's atomic structure. In addition, they used a special type of spectroscopy to identify various atomic and electronic structures within the ferritin. Those images showed that the ferritin was releasing iron and pinpointed its specific form.

If the technique were used to compare ferritin taken from diseased tissue with healthy ferritin, it could provide new insights into illness at the molecular level. Those discoveries could lead to new treatments. "I believe this will allow us to identify disease signatures in ferritin and many other proteins," Shokuhfar said.

The work was funded by Michigan Technological University with additional support from a National Science Foundation grant to UIC, number DMR-0959470. The research was conducted at the University of Illinois-Chicago.


Story Source:

The above story is based on materials provided by Michigan Technological University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Canhui Wang, Qiao Qiao, Tolou Shokuhfar, Robert F. Klie. High-Resolution Electron Microscopy and Spectroscopy of Ferritin in Biocompatible Graphene Liquid Cells and Graphene Sandwiches. Advanced Materials, 2014; DOI: 10.1002/adma.201306069

Cite This Page:

Michigan Technological University. "It's the water: Graphene balloon yields unprecedented images of hydrated protein molecules." ScienceDaily. ScienceDaily, 5 February 2014. <www.sciencedaily.com/releases/2014/02/140205103303.htm>.
Michigan Technological University. (2014, February 5). It's the water: Graphene balloon yields unprecedented images of hydrated protein molecules. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2014/02/140205103303.htm
Michigan Technological University. "It's the water: Graphene balloon yields unprecedented images of hydrated protein molecules." ScienceDaily. www.sciencedaily.com/releases/2014/02/140205103303.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins