Featured Research

from universities, journals, and other organizations

Simulated blindness can help revive hearing

Date:
February 5, 2014
Source:
Johns Hopkins
Summary:
Minimizing a person’s sight for as little as a week may help improve the brain’s ability to process hearing.

Minimizing a person's sight for as little as a week may help improve the brain's ability to process hearing, neuroscientists have found.

Related Articles


Hey-Kyoung Lee, an associate professor of neuroscience and researcher at the Mind/Brain Institute at the Johns Hopkins University, along with biologist Patrick Kanold at the University of Maryland, College Park, are co- authors on a paper in the journal Neuron, which examines the relationship between vision and hearing in the brain.

Music experts often cite blind musicians Stevie Wonder and Ray Charles as examples of how a lack of sight can heighten or enhance hearing. Scientists, however, did not fully understand just how that happened until now.

In experiments using mice, Lee, Kanold, and other researchers from the two universities, were able to uncover how the neural connections in the area of the brain that manages vision and hearing work together to support each sense. These findings could help those experiencing hearing loss regain more use of that sense.

"In my opinion, the coolest aspect of our work is that the loss of one sense -- vision -- can augment the processing of the remaining sense, in this case, hearing, by altering the brain circuit, which is not easily done in adults," Lee said.

"By temporarily preventing vision, we may be able to engage the adult brain to now change the circuit to better process sound, which can be helpful for recovering sound perception in patients with cochlear implants for example," she said.

In their experiments, the researchers placed healthy adult mice in a darkened environment to simulate blindness for about a week and monitored their response to certain sounds. Those responses and brain activity were then compared to a second group of mice that were in a traditional, naturally lit environment.

The researchers found a change in the brain circuitry for the mice that experienced simulated blindness, specifically in the area of the brain that processes sound, called the primary auditory cortex. The primary auditory cortex allows conscious perception of pitch and loudness.

"Our result would say that not having vision allows you to hear softer sounds and better discriminate pitch," said Lee, an expert on how the brain processes vision. "If you ever had to hear a familiar piece of music with a loud background noise, you would have noticed that sometimes it seems the beat or the melody is different, because some of the notes are lost with the background. Our work would suggest that if you don't have vision you can now rescue these 'lost' notes to now appreciate the music as is."

The researchers concluded that a certain set of connectors in the primary sensory areas of the brain, called thalamocortical inputs, are less flexible in humans later in life. When another sense also impaired, however, those connectors can be reactivated to support the sense that is lagging.

The University of Maryland's Kanold, whose expertise is in how the brain processes sound, is hopeful that the study's findings will apply to humans.

"We don't know how many days a human would have to be in the dark to get this effect, and whether they would be willing to do that," Kanold said. "But there might be a way to use multi-sensory training to correct some sensory processing problems in humans."

Presently, the changes uncovered by the group are reversible, meaning the mice that experienced simulated blindness eventually reverted to normal hearing after a few weeks in a normal light-dark environment. In the next phase of their five-year study, Lee and Kanold plan to look for ways to make the sensory improvements permanent. The pair also said they will look beyond individual neurons to study broader changes in the way the brain processes sounds.

Other researchers on the paper were Emily Petrus, David, Li and Hui Wang, all from the Department of Neuroscience and the Mind/Brain Institute at Johns Hopkins University; Adam P. Jones from the University of Maryland's Department of Biology and Amal Isaiah also from the University of Maryland's Department of Biology and the School of Medicine.

This research was supported by the National Institutes of Health, grant number R01-EY022720.

###

.


Story Source:

The above story is based on materials provided by Johns Hopkins. Note: Materials may be edited for content and length.


Journal Reference:

  1. Emily Petrus, Amal Isaiah, AdamP. Jones, David Li, Hui Wang, Hey-Kyoung Lee, PatrickO. Kanold. Crossmodal Induction of Thalamocortical Potentiation Leads to Enhanced Information Processing in the Auditory Cortex. Neuron, 2014; 81 (3): 664 DOI: 10.1016/j.neuron.2013.11.023

Cite This Page:

Johns Hopkins. "Simulated blindness can help revive hearing." ScienceDaily. ScienceDaily, 5 February 2014. <www.sciencedaily.com/releases/2014/02/140205125307.htm>.
Johns Hopkins. (2014, February 5). Simulated blindness can help revive hearing. ScienceDaily. Retrieved March 3, 2015 from www.sciencedaily.com/releases/2014/02/140205125307.htm
Johns Hopkins. "Simulated blindness can help revive hearing." ScienceDaily. www.sciencedaily.com/releases/2014/02/140205125307.htm (accessed March 3, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Tuesday, March 3, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

This Nasal Treatment Could Help Ease Migraine Pain

This Nasal Treatment Could Help Ease Migraine Pain

Newsy (Mar. 2, 2015) Researchers gave lidocaine to 112 patients, and about 88 percent of the subjects said they needed less migraine-relief medicine the next day. Video provided by Newsy
Powered by NewsLook.com
How Facebook Use Can Lead To Depression

How Facebook Use Can Lead To Depression

Newsy (Mar. 1, 2015) Margaret Duffy of the University of Missouri talks about her study on the social network and the envy and depression that Facebook use can cause. Video provided by Newsy
Powered by NewsLook.com
The Best Foods to Battle Stress

The Best Foods to Battle Stress

Buzz60 (Feb. 26, 2015) If you&apos;re dealing with anxiety, there are a few foods that can help. Krystin Goodwin (@krystingoodwin) has the best foods to tame stress. Video provided by Buzz60
Powered by NewsLook.com
Sleeping Too Much Or Too Little Might Increase Stroke Risk

Sleeping Too Much Or Too Little Might Increase Stroke Risk

Newsy (Feb. 26, 2015) People who sleep more than eight hours per night are 45 percent more likely to have a stroke, according to a University of Cambridge study. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


A Short Stay in Darkness May Heal Hearing Woes

Feb. 5, 2014 Call it the Ray Charles Effect: a young child who is blind learns to hear things others cannot. Researchers know that young brains are malleable enough to re-wire some circuits that process sensory ... read more

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins