Featured Research

from universities, journals, and other organizations

Ranking disease-causal mutations within whole genome sequences

Date:
February 7, 2014
Source:
HudsonAlpha Institute for Biotechnology
Summary:
Researchers have developed a new method for organizing and prioritizing genetic data. The Combined Annotation–Dependent Depletion method will assist scientists in their search for disease-causing mutation events in human genomes.

Researchers from the University of Washington and the HudsonAlpha Institute for Biotechnology have developed a new method for organizing and prioritizing genetic data. The Combined Annotation-Dependent Depletion, or CADD, method will assist scientists in their search for disease-causing mutation events in human genomes.

Related Articles


The new method is the subject of a paper titled "A general framework for estimating the relative pathogenicity of human genetic variants," published in Nature Genetics.

Current methods of organizing human genetic variation look at just one or a few factors and use only a small subset of the information available. For example, the Encyclopedia Of DNA Elements, or ENCODE, catalogs various types of functional elements in human genomes, while sequence conservation looks for similar or identical sequences that have survived across different species through hundreds of millions of years of evolution. CADD brings all of these data together, and more, into one score in order to provide a ranking that helps researchers discern which variants may be linked to disease and which ones may not.

"CADD will substantially improve our ability to identify disease-causal mutations, will continue to get better as genomic databases grow, and is an important analytical advance needed to better exploit the information content of whole-genome sequences in both clinical and research settings," said Gregory M. Cooper, Ph.D., faculty investigator at HudsonAlpha and one of the collaborators on CADD.

The goal in developing the new approach was to take the overwhelming amount of data available and distill it down into a single score that can be more easily evaluated by a researcher or clinician. To accomplish that, CADD compares and contrasts the properties of 15 million genetic variants separating humans from chimpanzees with 15 million simulated variants. Variants observed in humans have survived natural selection, which tends to remove harmful, disease-causing variants, while simulated variants are not exposed to selection. Thus, by comparing observed to simulated variants, CADD is able to identify those properties that make a variant harmful or disease-causing. C scores have been pre-computed for all 8.6 billion possible single nucleotide variants and are freely available for researchers.

"We didn't know what to expect," Cooper said, "but we were pleasantly surprised that CADD was able not only to be applicable to mutations everywhere in the genome but in fact do a substantially better job in nearly every test that we performed than other metrics."

The CADD method is unique from other algorithms in that it assigns scores to mutations anywhere in human genomes, not just the less-than two percent that encode proteins (the "exome"). This unique attribute will be crucial as whole-genome sequencing becomes routine in both clinical and research settings.


Story Source:

The above story is based on materials provided by HudsonAlpha Institute for Biotechnology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Martin Kircher, Daniela M Witten, Preti Jain, Brian J O'Roak, Gregory M Cooper, Jay Shendure. A general framework for estimating the relative pathogenicity of human genetic variants. Nature Genetics, 2014; DOI: 10.1038/ng.2892

Cite This Page:

HudsonAlpha Institute for Biotechnology. "Ranking disease-causal mutations within whole genome sequences." ScienceDaily. ScienceDaily, 7 February 2014. <www.sciencedaily.com/releases/2014/02/140207114144.htm>.
HudsonAlpha Institute for Biotechnology. (2014, February 7). Ranking disease-causal mutations within whole genome sequences. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2014/02/140207114144.htm
HudsonAlpha Institute for Biotechnology. "Ranking disease-causal mutations within whole genome sequences." ScienceDaily. www.sciencedaily.com/releases/2014/02/140207114144.htm (accessed October 31, 2014).

Share This



More Plants & Animals News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How A Chorus Led Scientists To A New Frog Species

How A Chorus Led Scientists To A New Frog Species

Newsy (Oct. 30, 2014) A frog noticed by a conservationist on New York's Staten Island has been confirmed as a new species after extensive study and genetic testing. Video provided by Newsy
Powered by NewsLook.com
Surfer Accidentally Stands on Shark, Gets Bitten

Surfer Accidentally Stands on Shark, Gets Bitten

AP (Oct. 30, 2014) A 20-year-old competition surfer said on Thursday he accidentally stepped on a shark's head before it bit him off the Australian east coast. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Ebola Inflicts Heavy Toll on Guinean Potato Trade

Ebola Inflicts Heavy Toll on Guinean Potato Trade

AFP (Oct. 30, 2014) The Ebola epidemic has seen Senegal and Guinea Bissau close its borders with Guinea and the economic consequences have started to be felt, especially in Fouta Djallon, where the renowned potato industry has been hit hard. Duration: 02:01 Video provided by AFP
Powered by NewsLook.com
Genetically Altered Glowing Flower on Display in Tokyo

Genetically Altered Glowing Flower on Display in Tokyo

Reuters - Innovations Video Online (Oct. 30, 2014) Just in time for Halloween, a glowing flower goes on display in Tokyo. Instead of sorcery and magic, its creators used science to genetically modify the flower, adding a naturally fluorescent plankton protein to its genetic mix. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins