Featured Research

from universities, journals, and other organizations

What makes newborn immune system in lungs different, vulnerable?

Date:
February 13, 2014
Source:
PLOS
Summary:
Newborns are more susceptible to infections, presumably because of their immature and inexperienced immune systems. The most common dangerous condition in newborns and infants are lower respiratory tract infections caused by viruses, especially respiratory syncytial virus. A study published shows how the immune system in the lungs during early life differs from the one in older children and adults.

Newborns are more susceptible to infections, presumably because of their immature and inexperienced immune systems. The most common dangerous condition in newborns and infants are lower respiratory tract infections caused by viruses, especially respiratory syncytial virus (RSV). A study published on February 13th in PLOS Pathogens shows how the immune system in the lungs during early life differs from the one in older children and adults.

Ideally, newborns could be protected against RSV by vaccination, but it is known that the immune system in early life is less responsive to "conventional" vaccines. Barney Graham and colleagues, from the US National Institute of Allergy and Infectious Diseases, are working on understanding the early immune system in order to develop effective vaccines for newborns and infants.

The immune response to virus infection in the lung involves mobile immune cells called dendritic cells (or DCs). After contact with a viral intruder, the DCs move into adjacent lymph nodes where they activate another type of immune cell, called CD8+ T cells, and thereby orchestrate a massive, body-wide, virus-specific attack. Graham and colleagues studied the behavior of these lung DCs in newborn mice and compared it with that in older animals.

They found that the lung DC responses following RSV infection undergo dramatic changes during the first weeks of life. One of the two subsets active in adults was present in low numbers and functionally limited in newborn mice. The second subset, called CD103+ DCs, is present in similar numbers in newborn and adults after virus infection. Following migration to the lymph nodes, CD103+ DCs initiate CD8+ T cell responses. However, when newborn CD103+ DCs and CD8+ T cells interact, the results are very different from the same interaction in older mice.

Depending on the age of the mice at the time of RSV infection, the CD103 DCs activate different subsets of CD8+ T cells. This suggests that DCs from newborns take up, digest, and present parts of an intruding virus to other immune cells in a fundamentally different way than in adults. In addition, the researchers found that CD103+ DCs from newborn mice have much lower expression of two critical "co-stimulatory" molecules (called CD80 and CD86) on their surface. These co-stimulators directly interact with a counterpart (called CD28) on the CD8+ T cells and in doing so boost the immune response, something that is severely impaired in neonatal mice. Dampening CD28-mediated stimulation in adult mice demonstrated that limited CD28-mediated co-stimulatory support from neonatal DCs may constitute one mechanism by which newborn and adult DCs induce distinct CD8+ T cell responses.

"A better understanding of deficiencies in early-life immunity will guide vaccine approaches that induce disease-sparing immune responses in infants," the researchers say. "Our data suggest that the CD80/CD86-CD28 axis may be exploited in the design of pediatric vaccines to promote the generation of more "adult-like" immune responses."


Story Source:

The above story is based on materials provided by PLOS. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tracy J. Ruckwardt, Allison M. W. Malloy, Kaitlyn M. Morabito, Barney S. Graham. Quantitative and Qualitative Deficits in Neonatal Lung-Migratory Dendritic Cells Impact the Generation of the CD8 T Cell Response. PLoS Pathogens, 2014; 10 (2): e1003934 DOI: 10.1371/journal.ppat.1003934

Cite This Page:

PLOS. "What makes newborn immune system in lungs different, vulnerable?." ScienceDaily. ScienceDaily, 13 February 2014. <www.sciencedaily.com/releases/2014/02/140213184812.htm>.
PLOS. (2014, February 13). What makes newborn immune system in lungs different, vulnerable?. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2014/02/140213184812.htm
PLOS. "What makes newborn immune system in lungs different, vulnerable?." ScienceDaily. www.sciencedaily.com/releases/2014/02/140213184812.htm (accessed August 27, 2014).

Share This




More Health & Medicine News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Predicting Heart Transplant Rejection With a Blood Test

Predicting Heart Transplant Rejection With a Blood Test

Ivanhoe (Aug. 27, 2014) Now a new approach to rejection of donor organs could change the way doctors predict transplant rejection…without expensive, invasive procedures. Video provided by Ivanhoe
Powered by NewsLook.com
Better Braces That Vibrate

Better Braces That Vibrate

Ivanhoe (Aug. 27, 2014) The length of time you have to keep your braces on could be cut in half thanks to a new device that speeds up the process. Video provided by Ivanhoe
Powered by NewsLook.com
Smartphone App Tracks Your Heart Rate

Smartphone App Tracks Your Heart Rate

Ivanhoe (Aug. 27, 2014) A new app that can track your heart rate 24/7 is available for download in your app store and its convenience could save your life. Video provided by Ivanhoe
Powered by NewsLook.com
Stroke in Young Adults

Stroke in Young Adults

Ivanhoe (Aug. 27, 2014) A stroke can happen at any time and affect anyone regardless of age. This mother chose to give her son independence and continue to live a normal life after he had a stroke at 18 years old. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins