Featured Research

from universities, journals, and other organizations

Harvesting light, the single-molecule way: Molecular mechanism of light harvesting may illuminate path forward to future solar cells

Date:
February 16, 2014
Source:
American Institute of Physics
Summary:
Scientists have reached new insights into one of the molecular mechanisms behind light harvesting, which enables photosynthetic organisms to thrive, even as weather conditions change from full sunlight to deep cloud cover. Probing these natural systems is helping us understand the basic mechanisms of light harvesting -- work that could help improve the design and efficiency of devices like solar cells in the future.

Light hitting photosynthetic antenna proteins is the first step in the light harvesting process, and studies of single copies of such proteins in solution has uncovered new photoprotective quenched states.
Credit: G. Schlau-Cohen/Stanford

New insights into one of the molecular mechanisms behind light harvesting, the process that enables photosynthetic organisms to thrive, even as weather conditions change from full sunlight to deep cloud cover, will be presented at the 58th Annual Biophysical Society Meeting, taking place in San Francisco from Feb. 15-19.

At the meeting, Hsiang-Yu Yang, a graduate student, and Gabriela Schlau-Cohen, a postdoc in W.E. Moerner's research group at Stanford University, will describe how probing these natural systems at the single molecule level is helping to understand the basic mechanisms of light harvesting -- work that could help improve the design and efficiency of devices like solar cells in the future.

"Through our approach, we are able to have a better understanding of the natural designs of light harvesting systems, especially how the same molecular machinery can perform efficient light harvesting at low light while safely dissipating excess excitation energy at high light," explained Yang.

The Moerner group has been studying various photosynthetic antenna proteins using the single-molecule Anti-Brownian ELectrokinetic (ABEL) trap and has uncovered new states of the light harvesting complexes with different degrees of quenching. "By analyzing the transition between these states in a bacterial antenna protein," explained Schlau-Cohen, "we found a process that may be one of the molecular mechanisms of photoprotection, or the way in which the organism protects itself from damage by excess light."

The next steps are to use this technique to understand the natural designs of light harvesting systems, and investigate whether the same processes appear in higher plants. Thus, they are extending their studies to look at photosynthetic proteins from green plants. Eventually, understanding these general principles may help in developing or improving the building of artificial light-harvesting devices.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Cite This Page:

American Institute of Physics. "Harvesting light, the single-molecule way: Molecular mechanism of light harvesting may illuminate path forward to future solar cells." ScienceDaily. ScienceDaily, 16 February 2014. <www.sciencedaily.com/releases/2014/02/140216151401.htm>.
American Institute of Physics. (2014, February 16). Harvesting light, the single-molecule way: Molecular mechanism of light harvesting may illuminate path forward to future solar cells. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2014/02/140216151401.htm
American Institute of Physics. "Harvesting light, the single-molecule way: Molecular mechanism of light harvesting may illuminate path forward to future solar cells." ScienceDaily. www.sciencedaily.com/releases/2014/02/140216151401.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins