Featured Research

from universities, journals, and other organizations

Making nanoelectronics last longer for medical devices, 'cyborgs'

Date:
February 19, 2014
Source:
American Chemical Society
Summary:
The debut of cyborgs who are part human and part machine may be a long way off, but researchers say they now may be getting closer. Scientists have now developed a coating that makes nanoelectronics much more stable in conditions mimicking those in the human body. The advance could also aid in the development of very small implanted medical devices for monitoring health and disease.

The debut of cyborgs who are part human and part machine may be a long way off, but researchers say they now may be getting closer. In a study published in ACS' journal Nano Letters, they report development of a coating that makes nanoelectronics much more stable in conditions mimicking those in the human body. The advance could also aid in the development of very small implanted medical devices for monitoring health and disease.

Related Articles


Charles Lieber and colleagues note that nanoelectronic devices with nanowire components have unique abilities to probe and interface with living cells. They are much smaller than most implanted medical devices used today. For example, a pacemaker that regulates the heart is the size of a U.S. 50-cent coin, but nanoelectronics are so small that several hundred such devices would fit in the period at the end of this sentence. Laboratory versions made of silicon nanowires can detect disease biomarkers and even single virus cells, or record heart cells as they beat. Lieber's team also has integrated nanoelectronics into living tissues in three dimensions -- creating a "cyborg tissue." One obstacle to the practical, long-term use of these devices is that they typically fall apart within weeks or days when implanted. In the current study, the researchers set out to make them much more stable.

They found that coating silicon nanowires with a metal oxide shell allowed nanowire devices to last for several months. This was in conditions that mimicked the temperature and composition of the inside of the human body. In preliminary studies, one shell material appears to extend the lifespan of nanoelectronics to about two years.


Story Source:

The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wei Zhou, Xiaochuan Dai, Tian-Ming Fu, Chong Xie, Jia Liu, Charles M. Lieber. Long Term Stability of Nanowire Nanoelectronics in Physiological Environments. Nano Letters, 2014; 140204102702001 DOI: 10.1021/nl500070h

Cite This Page:

American Chemical Society. "Making nanoelectronics last longer for medical devices, 'cyborgs'." ScienceDaily. ScienceDaily, 19 February 2014. <www.sciencedaily.com/releases/2014/02/140219105425.htm>.
American Chemical Society. (2014, February 19). Making nanoelectronics last longer for medical devices, 'cyborgs'. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2014/02/140219105425.htm
American Chemical Society. "Making nanoelectronics last longer for medical devices, 'cyborgs'." ScienceDaily. www.sciencedaily.com/releases/2014/02/140219105425.htm (accessed October 30, 2014).

Share This



More Matter & Energy News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Saharan Solar Project to Power Europe

Saharan Solar Project to Power Europe

Reuters - Business Video Online (Oct. 29, 2014) A solar energy project in the Tunisian Sahara aims to generate enough clean energy by 2018 to power two million European homes. Matt Stock reports. Video provided by Reuters
Powered by NewsLook.com
Lowe's Testing Robot Sales Assistants in California Store

Lowe's Testing Robot Sales Assistants in California Store

Buzz60 (Oct. 29, 2014) Lowe’s is testing out what it’s describing as a robotic shopping assistant in one of its Orchard Supply Hardware Stores in California. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins