Featured Research

from universities, journals, and other organizations

Learning about cancer by studying stem cells

Date:
February 25, 2014
Source:
NIH, National Institute of General Medical Sciences (NIGMS)
Summary:
Normally, when a cell becomes damaged or doesn't divide properly, the body's natural recycling process breaks it down and it dies. Sometimes, though, the damage is to the genes that control a cell, and the result is out-of-control division. When this happens, a cancer cell is born. New insights into how cancer cells arise and develop into tumors have been discovered by researchers studying stem cells.

Stem cells (green) and epithelial cells (blue) in the adult fruit fly gastrointestinal tract.
Credit: Lucy O'Brien and David Bilder, University of California, Berkeley

Normally, when a cell becomes damaged or doesn't divide properly, the body's natural recycling process breaks it down and it dies. Sometimes, though, the damage is to the genes that control a cell, and the result is out-of-control division. When this happens, a cancer cell is born.

Related Articles


New insights into how cancer cells arise and develop into tumors have come from researchers funded by the National Institutes of Health. Some of them are exploring the process by studying stem cells.

Modeling Early Pancreatic Cancer

Despite decades of progress in the detection, treatment and prevention of many types of cancer, the long-term survival rate for pancreatic cancer remains very low. One reason is that pancreatic cancer rarely produces symptoms until it has spread in the body.

The late stage at diagnosis also poses problems for researchers who want to study the early development of pancreatic cancer, according to Kenneth Zaret of the University of Pennsylvania School of Medicine. That's because pancreatic cancer cells taken from people and then used to form tumors in animal models immediately produce the aggressive, advanced cancers from which they were derived.

Zaret's lab has focused on understanding how transcription factors- -- proteins that control which genes in a cell are expressed -- -work in stem cells. His team recently explored the idea of reprogramming cancer cells so they act like embryonic stem cells, which can become just about any type of cell in the body. Because transcription factors in embryonic stem cells guide early organ development, the researchers thought that forcing cancer cells back to an embryonic state might allow the transcription factors to reproduce the early stages of cancer. This could then provide a model for studying the early development of pancreatic cancer.

Using tumor tissue from people with pancreatic cancer, Zaret and his colleagues succeeded in turning a sample of cancer cells back to an early, stem cell-like state. When used to create tumors in mice, these so-called induced pluripotent stem (iPS) cells formed early stage tumors and slowly progressed to invasive disease.

The human tumors grown in mice also secreted a wide range of proteins that are indicative of cell networks known to drive pancreatic cancer progression, as well as some not previously known to be associated with the disease. "We're setting up collaborations to test these markers for their utility in screening human blood samples and see if they function as markers for detecting or predicting pancreatic cancer in humans," said Zaret.

Scientists are also interested in using the iPS cells to screen new anticancer compounds and determine whether drugs under development might have the potential to help treat early stage pancreatic cancer.

Unraveling Cause and Effect in a Precursor to Esophageal Cancer

Like pancreatic cancer, esophageal cancer, which can begin anywhere in the muscular tube that runs from the throat to the stomach, has a low long-term survival rate. But unlike pancreatic cancer, research has produced insights into how to reduce the risk of developing esophageal cancer, including quitting smoking, reducing alcohol consumption and monitoring a potential precursor condition called Barrett's esophagus.

In Barrett's esophagus, the cells that line the lower esophagus, called epithelial cells, slowly change to resemble abnormal stomach or intestinal cells. The condition eventually progresses to esophageal cancer in up to 10 percent of cases. Scientists want to better understand the cellular mechanisms driving Barrett's esophagus to find ways to help treat it or prevent it from occurring and progressing to cancer.

The most common explanation for how Barrett's esophagus begins is that an excess of stomach acid, produced by conditions such as acid reflux (heartburn), washes up into the esophagus and causes tissue damage that leads to the production of the abnormal cells seen in the disease. Consequently, acid-reducing drugs are often prescribed to people with Barrett's esophagus to help slow its progression. However, new research from the lab of Heinrich Jasper at the Buck Institute for Research on Aging suggests an alternative explanation for the cellular changes seen in Barrett's esophagus.

Jasper's lab explores how stressful conditions affect the function of adult stem cells, which can become specialized tissue or organ cells. While looking at how stem cells control the regeneration of the gastrointestinal tract in a type of fruit fly, Jasper made an unexpected discovery: When a cell-signaling pathway driven by a protein called Dpp goes awry, it causes the stem cells that normally create the lining of the esophagus (the esophageal epithelium) to instead produce acid-generating stomach cells within the esophagus.

"What happens in Barrett's esophagus is really quite similar to what we observed [in fruit flies], which was a transformation of esophageal epithelium into something more like gastric epithelium," said Jasper. In other words, cellular changes in the esophagus may actually drive the excess production of acid rather than the other way around.

Jasper's lab is now working with collaborators at the University of Rochester to investigate this process in a mouse model of Barrett's esophagus. If something similar occurs in people, an understanding of errors in stem cell signaling might lead to the development of new treatments for Barrett's esophagus and the prevention of esophageal cancer.

Throughout the country, NIH-funded researchers continue to explore how our cells work normally and how they malfunction in disease. What scientists learn using stem cells, model organisms and a wealth of other approaches could help promote health as well as the diagnosis, treatment and prevention of diseases like cancer.


Story Source:

The above story is based on materials provided by NIH, National Institute of General Medical Sciences (NIGMS). The original article was written by Sharon Reynolds. Note: Materials may be edited for content and length.


Cite This Page:

NIH, National Institute of General Medical Sciences (NIGMS). "Learning about cancer by studying stem cells." ScienceDaily. ScienceDaily, 25 February 2014. <www.sciencedaily.com/releases/2014/02/140225111814.htm>.
NIH, National Institute of General Medical Sciences (NIGMS). (2014, February 25). Learning about cancer by studying stem cells. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2014/02/140225111814.htm
NIH, National Institute of General Medical Sciences (NIGMS). "Learning about cancer by studying stem cells." ScienceDaily. www.sciencedaily.com/releases/2014/02/140225111814.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins